Advertisement

Molecular Biology

, Volume 52, Issue 4, pp 570–576 | Cite as

Oncolytic Properties of a Mumps Virus Vaccine Strain in Human Melanoma Cell Lines

  • Y. I. Ammour
  • O. O. Ryabaya
  • A. V. Milovanova
  • A. V. Sidorov
  • I. E. Shohin
  • V. V. Zverev
  • T. V. Nasedkina
Molecular Cell Biology
  • 22 Downloads

Abstract

The oncolytic potential of the attenuated mumps virus (MV) vaccine strain Leningrad-3 (L-3) was evaluated in a panel of four human metastatic melanoma cell lines. The lines were shown to be susceptible and permissive to MV infection. Efficient MV replication led to death of melanoma cells, but the effect differed among the cell lines. Possible mechanisms mediating the selectivity of MV L-3 towards the cell lines were explored. Replicative and oncolytic activity of MV was found to depend on the expression pattern of type I interferon genes. None of the melanoma cell lines showed induction of expression of the total spectrum of genes required to inhibit virus replication. Based on the results, MV L-3 was assumed to be a promising oncolytic agent for human melanoma cells.

Keywords

oncolytic viruses mumps virus metastatic melanoma 

Abbreviations

qPCR

quantitative PCR

TCD

tissue cytopathic dose

ACTB

β-actin gene

FC

fold change

GAPDH

glyceraldehyde 3-phosphate dehydrogenase gene

IFN-β

interferon β

IFNAR1

interferon α/β receptor subunit 1

IFNB1

interferon β gene

ISG

interferon-stimulated gene

ISG12

interferon-stimulated gene 12

ISG15

interferon-stimulated gene 15

MDA5

melanoma differentiation-associated protein 5

MOI

multiplicity of infection

MV

mumps virus

MxA

myxovirus resistance gene A

OAS1

2'-5'-oligoadenylate synthetase 1 gene

PGK1

phosphoglycerate kinase 1 gene

PKR

protein kinase, RNA activated

RIG-I

retinoic acid-inducible gene 1

STAT1

signal transducer and activator of transcription 1 gene

STAT2

signal transducer and activator of transcription 2 gene

TRAIL

TNF-related apoptosis-inducing ligand

XAF-1

X-linked inhibitor of apoptosis protein (XIAP)-associated factor 1

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Imyanitov E.N. 2012. Epidemiology and biology of skin tumors. Pract. Oncol. 13, 61–68.Google Scholar
  2. 2.
    Lech P.J., Russell S.J. 2010. Use of attenuated paramyxoviruses for cancer therapy. Exp. Rev. Vaccines. 9, 1275–1302.CrossRefGoogle Scholar
  3. 3.
    Fuster M.M., Esko J.D. 2005. The sweet and sour of cancer: Glycans as novel therapeutic targets. Nat. Rev. Cancer. 5, 526–542.CrossRefPubMedGoogle Scholar
  4. 4.
    Matveeva O.V., Kochneva G.V., Netesov S.V., Onikienko S.B., Chumakov P.M. 2015. Mechanisms of oncolysis by paramyxovirus Sendai. Acta Naturae. 7, 6–16.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Ammour Y.I., Borisova T.K., Zverev V.V. 2013. Measles virus as an oncolytic agent. Vopr. Virusol. S1, 116–131.Google Scholar
  6. 6.
    Mikhaylova I.N., Morozova L.F., Golubeva V.A., Cheremushkin E.A., Lukashina M.I., Burova O.S., Utyashev I.A., Demidov L.V., Baryshnikov A.Y., Kovalevsky D.A., Beabealashvilli R.Sh., Voronina E.S., Kiselev S.L. 2008. Cancer/testis genes expression in human melanoma cell lines. Melanoma Res. 18, 303–313.CrossRefPubMedGoogle Scholar
  7. 7.
    Mikhaĭlova I.N., Lukashina M.I., Baryshnikov A.Iu., Morozova L.F., Burova O.S., Palkina T.N., et al. 2005. Melanoma cell lines as the basis for antitumor vaccine preparation. Vestn. Ross. Akad. Med. Nauk. 7, 37–40.Google Scholar
  8. 8.
    Ammour Y., Faizuloev E., Borisova T., Nikonova A., Dmitriev G., Lobodanov S., Zverev V. 2013. Quantification of measles, mumps and rubella viruses using real-time quantitative TaqMan-based RT-PCR assay. J. Virol. Methods. 187, 57–64.CrossRefPubMedGoogle Scholar
  9. 9.
    Reed L.J., Muench H. 1938. A simple method of estimating fifty percent endpoints. Am. J. Hygiene. 27, 493–497.Google Scholar
  10. 10.
    Livak K.J., Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta DeltaC (T)) method. Methods. 25, 402–408.CrossRefPubMedGoogle Scholar
  11. 11.
    Parisien J.P., Bamming D., Komuro A., Ramachandran A., Rodriguez J.J., Barber G., Wojahn R.D., Horvath C.M. 2009. A shared interface mediates paramyxovirus interference with antiviral RNA helicases MDA5 and LGP2. J. Virol. 83, 7252–7260.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kang D.C., Gopalkrishnan R.V., Wu Q., Jankowsky E., Pyle A.M., Fisher P.B. 2002. mda-5: An interferoninducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc. Natl. Acad. Sci. U. S. A. 22, 637–642.CrossRefGoogle Scholar
  13. 13.
    Kovacsovics M., Martinon F., Micheau O., Bodmer J.L., Hofmann K., Tschopp J. 2002. Overexpression of Helicard, a CARD-containing helicase cleaved during apoptosis, accelerates DNA degradation. Curr. Biol. 14, 838–843.CrossRefGoogle Scholar
  14. 14.
    Cheon H.J., Borden E.C., Stark G.R. 2014. Interferons and their stimulated genes in the tumor microenvironment. Semin. Oncol. 41, 156–173.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ivashkiv L.B., Donlin L.T. 2014. Regulation of type I interferon responses. Nat. Rev. Immunol. 14, 36–49.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Khodarev N.N., Beckett M., Labay E., Darga T., Roizman B., Weichselbaum R.R. 2004. STAT1 is overexpressed in tumors selected for radioresistance and confers protection from radiation in transduced sensitive cells. Proc. Natl. Acad. Sci. U. S. A. 101, 1714–1719.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rickardson L., Fryknäs M., Dhar S., Lövborg H., Gullbo J., Rydåker M., Nygren P., Gustafsson M.G., Larsson R., Isaksson A. 2005. Identification of molecular mechanisms for cellular drug resistance by combining drug activity and gene expression profiles. Br. J. Cancer. 93, 483–492.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Duarte C.W., Willey C.D., Zhi D., Cui X., Harris J.J., Vaughan L.K., Mehta T., McCubrey R.O., Khodarev N.N., Weichselbaum R.R., Gillespie G.Y. 2012. Expression signature of IFN/STAT1 signaling genes predicts poor survival outcome in glioblastoma multiforme in a subtype-specific manner. PLoS One. 7, e29653.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • Y. I. Ammour
    • 1
  • O. O. Ryabaya
    • 2
  • A. V. Milovanova
    • 1
  • A. V. Sidorov
    • 1
  • I. E. Shohin
    • 4
  • V. V. Zverev
    • 1
  • T. V. Nasedkina
    • 3
  1. 1.Mechnikov Institute of Vaccines and SeraMoscowRussia
  2. 2.Blokhin Russian Cancer Research CenterMinistry of Health of the Russian FederationMoscowRussia
  3. 3.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  4. 4.OOO Center of Pharmaceutical AnalyticsMoscowRussia

Personalised recommendations