Advertisement

Molecular Biology

, Volume 52, Issue 3, pp 372–384 | Cite as

Molecular Mechanisms of Drug Tolerance in Mycobacterium tuberculosis

  • A. V. Antonova
  • D. A. Gryadunov
  • D. V. Zimenkov
Reviews

Abstract

A dramatic increase in drug-resistant forms of tuberculosis (TB) stimulates a search for novel anti- TB drugs and studies of the drug resistance acquisition. One of the possible causes is a phenotypic resistance or drug tolerance which is not associated with genomic changes. The majority of anti-TB drugs eliminate 99% of MTB cells in 3–5 days, but the remaining subpopulation becomes unsusceptible to treatment and capable for long-term persistence with ability to resuscitate once the external adverse factor is removed. This evasion of the stress factor facilitates selection of resistant forms, thus warranting long-term treatment with at least four antibacterial drugs in TB. The review considers the main mechanisms of bacterial tolerance that are due to alterations in the cell wall, activation of efflux pumps, induction of transcriptional regulons, changes in metabolic flows, and modification of molecular machineries.

Keywords

Mycobacterium tuberculosis regulation of gene expression phenotypic resistance drug tolerance efflux pumps 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koul A., Arnoult E., Lounis N., et al. 2011. The challenge of new drug discovery for tuberculosis. Nature. 469, 483–490.PubMedCrossRefGoogle Scholar
  2. 2.
    Hobby G., Meyer K., Chaffee E. 1942. Observations on the mechanism of action of penicillin. Exp. Biol. Med. 50, 281–285.CrossRefGoogle Scholar
  3. 3.
    Mccune R., Tompsett R. 1956. Fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique: 1. The persistence of drug-susceptible tubercle bacilli in the tissues despite prolonged antimicrobial therapy. J. Exp. Med. 104, 737–762.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Brock A., Chang H., Huang S. 2009. Non-genetic heterogeneity—a mutation-independent driving force for the somatic evolution of tumours. Nat. Rev. Genet. 10, 336–342.PubMedCrossRefGoogle Scholar
  5. 5.
    Wu M., Tan J., Dick T. 2015. Eagle effect in nonreplicating persister mycobacteria. Antimicrob. Agents Chemother. 59, 7786–7789.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Eagle H., Musselman A. 1948. The rate of bactericidal action of penicillin in vitro as a function of its concentration, and its paradoxically reduced activity at high concentrations against certain organisms. J. Exp. Med. 88, 99–131.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Drlica K., Xu C., Wang J., et al. 1996. Fluoroquinolone action in mycobacteria: Similarity with effects in Escherichia coli and detection by cell lysate viscosity. Antimicrob. Agents Chemother. 40, 1594–1599.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Moyed H., Bertrand K. 1983. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J. Bacteriol. 155, 768–775.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Balaban N. 2004. Bacterial persistence as a phenotypic switch. Science. 305, 1622–1625.PubMedCrossRefGoogle Scholar
  10. 10.
    Jain P., Weinrick B., Kalivoda E., et al. 2016. Dualreporter mycobacteriophages (Φ2DRMS) reveal preexisting Mycobacterium tuberculosis persistent cells in human sputum. MBio. 7, e01023-16.CrossRefGoogle Scholar
  11. 11.
    Schlafer S., Meyer R. 2017. Confocal microscopy imaging of the biofilm matrix. J. Microbiol. Methods. 138, 50–59.PubMedCrossRefGoogle Scholar
  12. 12.
    Fridman O., Goldberg A., Ronin I., et al. 2014. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature. 513, 418–421.PubMedCrossRefGoogle Scholar
  13. 13.
    Levin-Reisman I., Ronin I., Gefen O., et al. 2017. Antibiotic tolerance facilitates the evolution of resistance. Science. 355, 826–830.PubMedCrossRefGoogle Scholar
  14. 14.
    Brauner A., Fridman O., Gefen O., et al. 2016. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol. 14, 320–330.PubMedCrossRefGoogle Scholar
  15. 15.
    Maisonneuve E., Shakespeare L., Jorgensen M., et al. 2011. Bacterial persistence by RNA endonucleases. Proc. Natl. Acad. Sci. U. S. A. 108, 13206–13211.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Dhar N., McKinney J. 2010. Mycobacterium tuberculosis persistence mutants identified by screening in isoniazid-treated mice. Proc. Natl. Acad. Sci. U. S. A. 107, 12275–12280.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Franzblau S., Degroote M., Cho S., et al. 2012. Comprehensive analysis of methods used for the evaluation of compounds against Mycobacterium tuberculosis. Tuberculosis. 92, 453–488.PubMedCrossRefGoogle Scholar
  18. 18.
    Pankey G., Sabath L. 2004. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 38, 864–870.PubMedCrossRefGoogle Scholar
  19. 19.
    Mueller M., De La Pena A., Derendorf H. 2004. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: Kill curves versus MIC. Antimicrob. Agents Chemother. 48, 369–377.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Brauner A., Shoresh N., Fridman O., et al. 2017. An experimental framework for quantifying bacterial tolerance. Biophys. J. 112, 2664–2671.PubMedCrossRefGoogle Scholar
  21. 21.
    Parish T., Roberts D. 2015. Mycobacteria Protocols, 3rd ed. New York: Humana Press.CrossRefGoogle Scholar
  22. 22.
    Saito K., Warrier T., Somersan-Karakaya S., et al. 2017. Rifamycin action on RNA polymerase in antibiotic-tolerant Mycobacterium tuberculosis results in differentially detectable populations. Proc. Natl. Acad. Sci. U. S. A. 114, e4832–E4840.CrossRefGoogle Scholar
  23. 23.
    Liu Z., Gao Y., Yang H., et al. 2016. Impact of hypoxia on drug resistance and growth characteristics of Mycobacterium tuberculosis clinical isolates. PLoS One. 11, e0166052.Google Scholar
  24. 24.
    Veatch A., Niu T., Caskey J., et al. 2016. Sequencing-relative to hybridization-based transcriptomics approaches better define Mycobacterium tuberculosis stress-response regulons. Tuberculosis. 101, S9–S17.CrossRefGoogle Scholar
  25. 25.
    Park H., Guinn K., Harrell M., et al. 2003. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol. Microbiol. 48, 833–843.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Rustad T., Harrell M., Liao R., et al. 2008. The enduring hypoxic response of Mycobacterium tuberculosis. PLoS One. 3, e1502.CrossRefGoogle Scholar
  27. 27.
    Cortes T., Schubert O., Banaei-Esfahani A., et al. 2017. Delayed effects of transcriptional responses in Mycobacterium tuberculosis exposed to nitric oxide suggest other mechanisms involved in survival. Sci. Rep. 7, 8208.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Gengenbacher M., Kaufmann S. 2012. Mycobacterium tuberculosis: Success through dormancy. FEMS Microbiol. Rev. 36, 514–532.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Garton N., Waddell S., Sherratt A., et al. 2008. Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med. 5, 0634–0645.CrossRefGoogle Scholar
  30. 30.
    Honeyborne I., McHugh T., Kuittinen I., et al. 2016. Profiling persistent tubercule bacilli from patient sputa during therapy predicts early drug efficacy. BMC Med. 14, 68.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Walter N., Dolganov G., Garcia B., et al. 2015. Transcriptional adaptation of drug-tolerant Mycobacterium tuberculosis during treatment of human tuberculosis. J. Infect. Dis. 212, 990–998.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Rohde K., Yates R., Purdy G., et al. 2007. Mycobacterium tuberculosis and the environment within the phagosome. Immunol. Rev. 219, 37–54.PubMedCrossRefGoogle Scholar
  33. 33.
    Via L., Lin P., Ray S., et al. 2008. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect. Immun. 76, 2333–2340.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    De Voss J., Rutter K., Schroeder B., et al. 2000. The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc. Natl. Acad. Sci. U. S. A. 97, 1252–1257.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Rifat D., Bishai W., Karakousis P. 2009. Phosphate depletion: A novel trigger for Mycobacterium tuberculosis persistence. J. Infect. Dis. 200, 1126–1135.PubMedCrossRefGoogle Scholar
  36. 36.
    Mouton J., Helaine S., Holden D., et al. 2016. Elucidating population-wide mycobacterial replication dynamics at the single-cell level. Microbiology. 162, 966–978.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Mukamolova G., Turapov O., Malkin J., et al. 2010. Resuscitation-promoting factors reveal an occult population of tubercle bacilli in sputum. Am. J. Respir. Crit. Care Med. 181, 174–180.PubMedCrossRefGoogle Scholar
  38. 38.
    Sun Z., Zhang Y. 1999. Spent culture supernatant of Mycobacterium tuberculosis H37Ra improves viability of aged cultures of this strain and allows small inocula to initiate growth. J. Bacteriol. 181, 7626–7628.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Kondratieva T., Azhikina T., Nikonenko B., et al. 2014. Latent tuberculosis infection: What we know about its genetic control? Tuberculosis. 94, 462–468.PubMedCrossRefGoogle Scholar
  40. 40.
    Peddireddy V., Doddam S., Ahmed N. 2017. Mycobacterial dormancy systems and host responses in tuberculosis. Front. Immunol. 8, 84.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Elowitz M. 2002. Stochastic gene expression in a single cell. Science. 297, 1183–1186.PubMedCrossRefGoogle Scholar
  42. 42.
    Eldar A., Elowitz M. 2010. Functional roles for noise in genetic circuits. Nature. 467, 167–173.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Raffetseder J., Pienaar E., Blomgran R., et al. 2014. Replication rates of Mycobacterium tuberculosis in human macrophages do not correlate with mycobacterial antibiotic susceptibility. PLoS One. 9, e112426.CrossRefGoogle Scholar
  44. 44.
    Wakamoto Y., Dhar N., Chait R., et al. 2013. Dynamic persistence of antibiotic-stressed mycobacteria. Science. 339, 91–95.PubMedCrossRefGoogle Scholar
  45. 45.
    Ling J., O’Donoghue P., Soll D. 2015. Genetic code flexibility in microorganisms: Novel mechanisms and impact on physiology. Nat. Rev. Microbiol. 13, 707–721.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Javid B., Sorrentino F., Toosky M., et al. 2014. Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance. Proc. Natl. Acad. Sci. U. S. A. 111, 1132–1137.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Cadena A., Fortune S., Flynn J. 2017. Heterogeneity in tuberculosis. Nat. Rev. Immunol. 17, 691–702.PubMedCrossRefGoogle Scholar
  48. 48.
    Gill W., Harik N., Whiddon M., et al. 2009. A replication clock for Mycobacterium tuberculosis. Nat. Med. 15, 211–214.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Baek S., Li A., Sassetti C. 2011. Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol. 9, e1001065.CrossRefGoogle Scholar
  50. 50.
    Shi L., Sohaskey C., Pfeiffer C., et al. 2010. Carbon flux rerouting during Mycobacterium tuberculosis growth arrest. Mol. Microbiol. 78, 1199–1215.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Lovewell R., Sassetti C., VanderVen B. 2016. Chewing the fat: Lipid metabolism and homeostasis during M. tuberculosis infection. Curr. Opin. Microbiol. 29, 30–36.PubMedCrossRefGoogle Scholar
  52. 52.
    Barisch C., Soldati T. 2017. Breaking fat! How mycobacteria and other intracellular pathogens manipulate host lipid droplets. Biochimie. 141, 54–56.PubMedCrossRefGoogle Scholar
  53. 53.
    Waltermann M., Steinbuchel A. 2005. Neutral lipid bodies in prokaryotes: Recent insights into structure, formation, and relationship to eukaryotic lipid depots. J. Bacteriol. 187, 3607–3619.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Kim M., Wainwright H., Locketz M., et al. 2010. Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol. Med. 2, 258–274.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Hammond R., Baron V., Oravcova K., et al. 2015. Phenotypic resistance in mycobacteria: Is it because I am old or fat that I resist you? J. Antimicrob. Chemother. 70, 2823–2827.PubMedCrossRefGoogle Scholar
  56. 56.
    Deb C., Lee C., Dubey V., et al. 2009. A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS One. 4, e6077.CrossRefGoogle Scholar
  57. 57.
    Pandey A., Sassetti C. 2008. Mycobacterial persistence requires the utilization of host cholesterol. Proc. Natl. Acad. Sci. U. S. A. 105, 4376–4380.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Nazarova E., Montague C., La T., et al. 2017. Rv3723/LucA coordinates fatty acid and cholesterol uptake in Mycobacterium tuberculosis. eLife. 6, e26969.CrossRefGoogle Scholar
  59. 59.
    Rittershaus E., Baek S., Sassetti C. 2013. The normalcy of dormancy: Common themes in microbial quiescence. Cell Host Microbe. 13, 643–651.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Hartman T., Wang Z., Jansen R., et al. 2017. Metabolic perspectives on persistence. Microbiol. Spectr. 5, TBTB2-0026-2016.Google Scholar
  61. 61.
    Nandakumar M., Nathan C., Rhee K. 2014. Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis. Nat. Commun. 5, 4306.PubMedCrossRefGoogle Scholar
  62. 62.
    Munoz-Elias E., Upton A., Cherian J., et al. 2006. Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol. Microbiol. 60, 1109–1122.PubMedCrossRefGoogle Scholar
  63. 63.
    Singh K., Sharma R., Keshari D., et al. 2017. Downregulation of malate synthase in Mycobacterium tuberculosis H37Ra leads to reduced stress tolerance, persistence and survival in macrophages. Tuberculosis. 106, 73–81.PubMedCrossRefGoogle Scholar
  64. 64.
    Boshoff H., Barry C. 2005. Tuberculosis: Metabolism and respiration in the absence of growth. Nat. Rev. Microbiol. 3, 70–80.PubMedCrossRefGoogle Scholar
  65. 65.
    Watanabe S., Zimmermann M., Goodwin M., et al. 2011. Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. PLoS Pathog. 7, e1002287.CrossRefGoogle Scholar
  66. 66.
    Eoh H., Rhee K. 2013. Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U. S. A. 110, 6554–6559.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Kurthkoti K., Amin H., Marakalala M., et al. 2017. The capacity of Mycobacterium tuberculosis to survive iron starvation might enable it to persist in irondeprived microenvironments of human granulomas. mBio. 8, e01092-17.CrossRefGoogle Scholar
  68. 68.
    Velayati A., Farnia P. 2017. Atlas of Mycobacterium tuberculosis, 1st ed. New York: Academic.Google Scholar
  69. 69.
    Chuang Y., Belchis D., Karakousis P. 2013. The polyphosphate kinase gene ppk2 is required for Mycobacterium tuberculosis inorganic polyphosphate regulation and virulence. mBio. 4, e00039-13.CrossRefGoogle Scholar
  70. 70.
    Maisonneuve E., Castro-Camargo M., Gerdes K. 2013. (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell. 154, 1140–1150.PubMedCrossRefGoogle Scholar
  71. 71.
    Maisonneuve E., Gerdes K. 2014. Molecular mechanisms underlying bacterial persisters. Cell. 157, 539–548.PubMedCrossRefGoogle Scholar
  72. 72.
    Chuang Y., Dutta N., Hung C., et al. 2016. Stringent response factors PPX1 and PPK2 play an important role in Mycobacterium tuberculosis metabolism, biofilm formation, and sensitivity to isoniazid in vivo. Antimicrob. Agents. Chemother. 60, 6460–6470.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Fux C., Costerton J., Stewart P., et al. 2005. Survival strategies of infectious biofilms. Trends Microbiol. 13, 34–40.PubMedCrossRefGoogle Scholar
  74. 74.
    Ojha A., Anand M., Bhatt A., et al. 2005. GroEL1: A dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell. 123, 861–873.PubMedCrossRefGoogle Scholar
  75. 75.
    Ojha A., Baughn A., Sambandan D., et al. 2008. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol. Microbiol. 69, 164–174.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Pang J., Layre E., Sweet L., et al. 2012. The polyketide pks1 contributes to biofilm formation in Mycobacterium tuberculosis. J. Bacteriol. 194, 715–721.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Flemming H., Wingender J. 2010. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633.PubMedCrossRefGoogle Scholar
  78. 78.
    Trivedi A., Mavi P., Bhatt D., et al. 2016. Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis. Nat. Commun. 7, 11392.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Sharma I., Petchiappan A., Chatterji D. 2014. Quorum sensing and biofilm formation in mycobacteria: Role of c-di-GMP and methods to study this second messenger. IUBMB Life. 66, 823–834.PubMedCrossRefGoogle Scholar
  80. 80.
    Jackson M. 2014). The mycobacterial cell envelopelipids. Cold Spring Harb. Perspect. Med. 4, a021105.Google Scholar
  81. 81.
    Lavollay M., Arthur M., Fourgeaud M., et al. 2008. The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by L,D-transpeptidation. J. Bacteriol. 190, 4360–4366.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Gupta R., Lavollay M., Mainardi J.-L., et al. 2010. The Mycobacterium tuberculosis protein LdtMt2 is a nonclassical transpeptidase required for virulence and resistance to amoxicillin. Nat. Med. 16, 466–469.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Wayne L., Hayes L. 1996. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect. Immun. 64, 2062–2069.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Sarathy J., Dartois V., Dick T., et al. 2013. Reduced drug uptake in phenotypically resistant nutrientstarved nonreplicating Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 57, 1648–1653.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Ren Q., Kang K., Paulsen I. 2004. TransportDB: A relational database of cellular membrane transport systems. Nucleic Acids Res. 32, D284–D288.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Li G., Zhang J., Guo Q., et al. 2015. Efflux pump gene expression in multidrug-resistant Mycobacterium tuberculosis clinical isolates. PLoS One. 10, e0119013.Google Scholar
  87. 87.
    Te Brake L., de Knegt G., de Steenwinkel J., et al. 2018. The role of efflux pumps in tuberculosis treatment and their promise as a target in drug development: Unraveling the black box. Annu. Rev. Pharmacol. Toxicol. doi annurev-pharmtox-010617-052438Google Scholar
  88. 88.
    Rengarajan J., Bloom B., Rubin E. 2005. Genomewide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc. Natl. Acad. Sci. U. S. A. 102, 8327–8332.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Adams K., Takaki K., Connolly L., et al. 2011. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell. 145, 39–53.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Zahner D., Zhou X., Chancey S., et al. 2010. Human antimicrobial peptide LL-37 induces MefE/Melmediated macrolide resistance in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 54, 3516–3519.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Buriankova K., Doucet-Populaire F., Dorson O., et al. 2004. Molecular basis of intrinsic macrolide resistance in the Mycobacterium tuberculosis complex. Antimicrob. Agents Chemother. 48, 143–150.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Morris R., Nguyen L., Gatfield J., et al. 2005. Ancestral antibiotic resistance in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U. S. A. 102, 12200–12205.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Wei J., Dahl J., Moulder J., et al. 2000. Identification of a Mycobacterium tuberculosis gene that enhances mycobacterial survival in macrophages. J. Bacteriol. 182, 377–384.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Chen W., Biswas T., Porter V., et al. 2011. Unusual regioversatility of acetyltransferase Eis, a cause of drug resistance in XDR-TB. Proc. Natl. Acad. Sci. U. S. A. 108, 9804–9808.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Cole S., Brosch R., Parkhill J., et al. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 393, 537–544.PubMedCrossRefGoogle Scholar
  96. 96.
    Sachdeva P., Misra R., Tyagi A., et al. 2010. The sigma factors of Mycobacterium tuberculosis: Regulation of the regulators. FEBS J. 277, 605–626.PubMedCrossRefGoogle Scholar
  97. 97.
    Flentie K., Garner A., Stallings C. 2016. Mycobacterium tuberculosis transcription machinery: Ready to respond to host attacks. J. Bacteriol. 198, 1360–1373.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Michele T., Ko C., Bishai W. 1999. Exposure to antibiotics induces expression of the Mycobacterium tuberculosis sigF gene: Implications for chemotherapy against mycobacterial persistors. Antimicrob. Agents Chemother. 43, 218–225.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Geiman D., Kaushal D., Ko C., et al. 2004. Attenuation of late-stage disease in mice infected by the Mycobacterium tuberculosis mutant lacking the SigF alternate sigma factor and identification of SigF-dependent genes by microarray analysis. Infect. Immun. 72, 1733–1745.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Dey A., Verma A., Chatterji D. 2010. Role of an RNA polymerase interacting protein, MsRbpA, from Mycobacterium smegmatis in phenotypic tolerance to rifampicin. Microbiology. 156, 873–883.PubMedCrossRefGoogle Scholar
  101. 101.
    Flatten I., Morigen, Skarstad K. 2009. DnaA protein interacts with RNA polymerase and partially protects it from the effect of rifampicin. Mol. Microbiol. 71, 1018–1030.PubMedCrossRefGoogle Scholar
  102. 102.
    Newell K., Thomas D., Brekasis D., et al. 2006. The RNA polymerase-binding protein RbpA confers basal levels of rifampicin resistance on Streptomyces coelicolor. Mol. Microbiol. 60, 687–696.PubMedCrossRefGoogle Scholar
  103. 103.
    Dey A., Adithi V., Chatterji D. 2012. Co-evolution of RNA polymerase with RbpA in the phylum Actinobacteria. Appl. Transl. Genomics. 1, 9–20.CrossRefGoogle Scholar
  104. 104.
    Hu Y., Morichaud Z., Perumal A., et al. 2014. Mycobacterium RbpA cooperates with the stress-response σb subunit of RNA polymerase in promoter DNA unwinding. Nucleic Acids Res. 42, 10399–10408.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Hu Y., Wang Z., Feng L., et al. 2016. σE-dependent activation of RbpA controls transcription of the furAkatG operon in response to oxidative stress in mycobacteria. Mol. Microbiol. 102, 107–120.PubMedCrossRefGoogle Scholar
  106. 106.
    Albrethsen J., Agner J., Piersma S., et al. 2013. Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin–antitoxin systems. Mol. Cell Proteomics. 12, 1180–1191.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Van Melderen L. 2010. Toxin-antitoxin systems: Why so many, what for? Curr. Opin. Microbiol. 13, 781–785.PubMedCrossRefGoogle Scholar
  108. 108.
    Schifano J., Cruz J., Vvedenskaya I., et al. 2016. tRNA is a new target for cleavage by a MazF toxin. Nucleic Acids Res. 44, 1256–1270.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Cruz J., Sharp J., Hoffer E., et al. 2015. Growth-regulating Mycobacterium tuberculosis VapC-mt4 toxin is an isoacceptor-specific tRNase. Nat. Commun. 6, 7480.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Ramage H., Connolly L., Cox J. 2009. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: Implications for pathogenesis, stress responses, and evolution. PLoS Genet. 5, e1000767.CrossRefGoogle Scholar
  111. 111.
    Gupta A., Venkataraman B., Vasudevan M., et al. 2017. Co-expression network analysis of toxin-antitoxin loci in Mycobacterium tuberculosis reveals key modulators of cellular stress. Sci. Rep. 7, 5868.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Arcus V., Rainey P., Turner S. 2005. The PIN-domain toxin-antitoxin array in mycobacteria. Trends Microbiol. 13, 360-365.PubMedCrossRefGoogle Scholar
  113. 113.
    Winther K., Brodersen D., Brown A., et al. 2013. VapC20 of Mycobacterium tuberculosis cleaves the sarcin–ricin loop of 23S rRNA. Nat. Commun. 4, 2796.PubMedCrossRefGoogle Scholar
  114. 114.
    Kim Y., Choi E., Hwang J. 2016. Functional studies of five toxin-antitoxin modules in Mycobacterium tuberculosis H37Rv. Front. Microbiol. 7, 2071.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Winther K., Tree J., Tollervey D., et al. 2016. VapCs of Mycobacterium tuberculosis cleave RNAs essential for translation. Nucleic Acids Res. 44, 9860–9871.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Vesper O., Amitai S., Belitsky M., et al. 2011. Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli. Cell. 147, 147–157.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Tiwari P., Arora G., Singh M., et al. 2015. MazF ribonucleases promote Mycobacterium tuberculosis drug tolerance and virulence in guinea pigs. Nat. Commun. 6, 6059.PubMedCrossRefGoogle Scholar
  118. 118.
    Cortes T., Schubert O., Rose G., et al. 2013. Genomewide mapping of transcriptional start sites defines an extensive leaderless transcriptome in Mycobacterium tuberculosis. Cell. Rep. 5, 1121–1131.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Tanaka N., Meineke B., Shuman S. 2011. RtcB, a novel RNA ligase, can catalyze tRNA splicing and HAC1 mRNA splicing in vivo. J. Biol. Chem. 286, 30253–30257.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Yukl E., Ioanoviciu A., Ortiz De Montellano P., et al. 2007. Interdomain interactions within the two-component heme-based sensor DevS from Mycobacterium tuberculosis. Biochemistry. 46, 9728–9736.PubMedCrossRefGoogle Scholar
  121. 121.
    de Keijzer J., Mulder A., de Ru A., et al. 2017. Parallel reaction monitoring of clinical Mycobacterium tuberculosis lineages reveals pre-existent markers of rifampicin tolerance in the emerging Beijing lineage. J. Proteomics. 150, 9–17.PubMedCrossRefGoogle Scholar
  122. 122.
    Voskuil M., Visconti K., Schoolnik G. 2004. Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low-oxygen dormancy. Tuberculosis. 84, 218–227.PubMedCrossRefGoogle Scholar
  123. 123.
    Kumari P., Sikri K., Kaur K., et al. 2017. Sustained expression of DevR/DosR during long-term hypoxic culture of Mycobacterium tuberculosis. Tuberculosis. 106, 33–37.PubMedCrossRefGoogle Scholar
  124. 124.
    Trauner A., Lougheed K., Bennett M., et al. 2012. The dormancy regulator DosR controls ribosome stability in hypoxic mycobacteria. J. Biol. Chem. 287, 24053–24063.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Yamamoto H., Wittek D., Gupta R., et al. 2016. 70Sscanning initiation is a novel and frequent initiation mode of ribosomal translation in bacteria. Proc. Natl. Acad. Sci. U. S. A. 113, e1180–E1189.CrossRefGoogle Scholar
  126. 126.
    Rustad T., Minch K., Brabant W., et al. 2013. Global analysis of mRNA stability in Mycobacterium tuberculosis. Nucleic Acids Res. 41, 509–517.PubMedCrossRefGoogle Scholar
  127. 127.
    Bunker R., Mandal K., Bashiri G., et al. 2015. A functional role of Rv1738 in Mycobacterium tuberculosis persistence suggested by racemic protein crystallography. Proc. Natl. Acad. Sci. U. S. A. 112, 4310–4315.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Smith L., Bochkareva A., Rolfe M., et al. 2017. Cmr is a redox-responsive regulator of DosR that contributes to M. tuberculosis virulence. Nucleic Acids Res. 45, 6600–6612.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Burian J., Ramon-Garcia S., Sweet G., et al. 2012. The mycobacterial transcriptional regulator whiB7 gene links redox homeostasis and intrinsic antibiotic resistance. J. Biol. Chem. 287, 299–310.PubMedCrossRefGoogle Scholar
  130. 130.
    Reeves A., Campbell P., Sultana R., et al. 2013. Aminoglycoside cross-resistance in Mycobacterium tuberculosis due to mutations in the 5′ untranslated region of whiB7. Antimicrob. Agents Chemother. 57, 1857–1865.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Li G., Zhang J., Guo Q., et al. 2015. Efflux pump gene expression in multidrug-resistant Mycobacterium tuberculosis clinical isolates. PLoS One. 10, e0119013.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. V. Antonova
    • 1
  • D. A. Gryadunov
    • 1
  • D. V. Zimenkov
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations