Molecular Biology

, Volume 52, Issue 2, pp 200–205 | Cite as

Identification of Fusion Transcripts in Leukеmic Cells by Whole-Transcriptome Sequencing

  • A. Yu. Ikonnikova
  • Yu. I. Ammour
  • A. V. Snezhkina
  • G. S. Krasnov
  • A. V. Kudryavtseva
  • T. V. Nasedkina
Genomics. Transcriptomics


Genetic aberrations in leukemia often lead to the formation of expressed chimeric genes, which should be assessed for proper diagnosis and therapy. Modern methods of molecular diagnostic mainly allow to identify already known fusion genes. RNAseq is an efficient tool for identification of rare and novel chimeric transcripts. Here we present the results of the whole transcriptome analysis of bone marrow samples from five patients with acute myeloblastic leukemia and one, with myelodysplastic syndrome. The wholetranscriptome analysis was performed using Illumina/Solexa approach. We found rare or unknown chimeric transcripts including ETV6-MDS1, MN1-ETV6, OAZ1-PTMA, and MLLT10-GRIA4. Each of these transcripts was confirmed by RT-PCR and Sanger sequencing.


massive parallel sequencing fusion genes whole-transcriptome analysis acute leukemia 



acute myeloid leukemia


cytogenetically normal AML


reverse transcription-polymerase chain reaction


super elongation complex subunit gene

AF10 (MLLT10)

mixed lineage leukemia, translocated to, 10


gene of acute myeloid leukemia protein 1

AMPA4 (alpha 4)

glutamate ionotropic receptor AMPA type subunit 4 gene


additional sex combs like 1 transcriptional regulator


CBFA2/RUNX1 translocation partner 3 gene


core-binding factor beta gene


CCAAT/enhancer-binding protein alpha gene

DHH (desert hedgehog)

gene of the signal protein of Hedgehog family


DNA methyltransferase-3-alpha gene

ETO (eight twenty-one)

gene of translocation (8;21)

ETV6 (E-twentysix)

gene of specific variant 6 of E26 transformation family

EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit)

gene of histone-lysine-N-methyltransferase


gene of fms related tyrosine kinase 3


GLIS family zinc finger 2 protein gene


glutamate ionotropic receptor AMPA-type subunit 4


gene of axonemal microtubule associated protein RP


gene of the G protein-coupled receptor 128


homeobox A10 protein gene


cytosolic isocitrate dehydrogenase (NADP(+)) 1 gene


mitochondrial isocitrate dehydrogenase (NADP(+)) 2 gene


myelodysplasia syndrome 1 gene


mixed lineage leukemia gene


gene of transcriptional regulator, meningioma proto-oncogene


gene of myosin heavy chain 11


next-generation sequencing


nucleophosmin gene


nucleoporin 98


nucleolar and spindle-associated protein 1 gene


ornithine decarboxylase antizyme 1 gene


PHD finger protein 23 gene


promyelocytic leukemia gene


gene of prothymosin alpha


gene of retinoic acid receptor alpha


Ras homolog enriched in brain like 1 gene


gene of septin 6


tet-methylcytosine dioxygenase 2 gene


TRK-fused gene


WD repeat domain 6


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Creutzig U., Zimmermann M., Reinhardt D., et al. 2016. Changes in cytogenetics and molecular genetics in acute myeloid leukemia from childhood to adult age groups. Cancer. 122, 3821–3830.CrossRefPubMedGoogle Scholar
  2. 2.
    Papaemmanuil E., Gerstung M., Bullinger L., et al. 2016. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 374, 2209–2221.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Marcucci G., Mrózek K., Ruppert A.S., et al. 2005. Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t(8;21) differ from those of patients with inv(16): A cancer and leukemia group B study. J. Clin. Oncol. 23, 5705–5717.CrossRefPubMedGoogle Scholar
  4. 4.
    Marschalek R. 2011. Mechanisms of leukemogenesis by MLL fusion proteins. Br. J. Haematol. 152, 141–154.CrossRefPubMedGoogle Scholar
  5. 5.
    Falini B., Mecucci C., Tiacci E., et al. 2005. GIMEMA Acute Leukemia Working Party. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N. Engl. J. Med. 352, 254–266.CrossRefPubMedGoogle Scholar
  6. 6.
    Togni M., Masetti R., Pigazzi M., et al. 2015. Identification of the NUP98–PHF23 fusion gene in pediatric cytogenetically normal acute myeloid leukemia by wholetranscriptome sequencing. J. Hematol. Oncol. 8,69.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Masetti R., Pigazzi M., Togni M., et al. 2013. GBFA2T3–GLIS2 fusion transcript is a novel common feature in pediatric, cytogenetically normal AML, not restricted to FAB M7 subtype. Blood. 121, 3469–3472.CrossRefPubMedGoogle Scholar
  8. 8.
    Masetti R., Togni M., Astolfi A., et al. 2013. DHH–RHEBL1 fusion transcript: A novel recurrent feature in the new landscape of pediatric CBFA2T3–GLIS2-positive acute myeloid leukemia. Oncotarget. 4, 1712–1720.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Yatsenko Y., Kalennik O., Maschan M., et al. 2013. NPM1, FLT3, and c-KIT mutations in pediatric acute myeloid leukemia in Russian population. J. Pediatr. Hematol. Oncol. 35, 100–108.CrossRefGoogle Scholar
  10. 10.
    Liang D.C., Liu H.C., Yang C.P., et al. 2013. Cooperating gene mutations in childhood acute myeloid leukemia with special reference on mutations of ASXL1, TET2, IDH1, IDH2, and DNMT3A. Blood. 121, 2988–2995.CrossRefPubMedGoogle Scholar
  11. 11.
    Bolger A.M., Lohse M., Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 30, 2114–2120.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kim D., Pertea G., Trapnell C., et al. 2013. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    McPherson A., Hormozdiari F., Zayed A., et al. 2011. deFuse: An algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Comput. Biol. 7, e1001138.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Krzywinski M., Schein J., Birol I., et al. 2009. Circos: An information aesthetic for comparative genomics. Genome Res. 19, 1639–1645.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    De Braekeleer E., Douet-Guilbert N., Morel F., et al. 2012. ETV6 fusion genes in hematological malignancies: A review. Leuk. Res. 36, 945–961.CrossRefPubMedGoogle Scholar
  16. 16.
    Kim Y.J., Yang J.J., Han Y., et al. 2017. A rare case of ETV6/MECOM rearrangement in therapy-related acute myeloid leukemia with t(3;12) and monosomy 7. Clin. Lab. 63, 415–418.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. Yu. Ikonnikova
    • 1
  • Yu. I. Ammour
    • 2
  • A. V. Snezhkina
    • 1
  • G. S. Krasnov
    • 1
  • A. V. Kudryavtseva
    • 1
  • T. V. Nasedkina
    • 1
    • 2
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Federal Research and Clinical Center of Pediatric Hematology, Oncology, and ImmunologyMoscowRussia

Personalised recommendations