Molecular Biology

, Volume 52, Issue 1, pp 19–22 | Cite as

Mutant Initiation Factor eIF4A (R362Q) Does Not Suppress the Assembly of the 48S Preinitiation Complex on mRNA with the Leader Sequence of mRNA That Encodes for Obelin

  • P. A. Sakharov
  • S. Ch. AgalarovEmail author
Molecular Cell Biology


The formation of ribosomal 48S initiation complexes at the start codon of the mRNA leader sequence that encodes obelin has been studied using the method of primer extension inhibition (toeprinting). Experiments have been performed in a system composed of purified individual components required to initiate translation. The influence of the dominant negative mutant of factor eIF4A (R362Q) on translation initiation has been studied. It has been shown that the presence of the mutant in reaction mixture has no effect on efficiency of formation of the 48S complexes at start codon of the template studied.


translation initiation uncapped mRNA initiation factors eIF4A and eIF4F mutant factor eIF4A (R362Q) 



untranslated region


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jackson R.J., Hellen C.U., Pestova T.V. 2010. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell. Biol. 11, 113–127.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Vassilenko K.S., Alekhina O.M., Dmitriev S.E., et al. 2011. Unidirectional constant rate motion of the ribosomal scanning particle during eukaryotic translation initiation. Nucleic Acids Res. 39, 5555–5567.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kumar P., Hellen C.U., Pestova T.V. 2016. Toward the mechanism of eIF4F-mediated ribosomal attachment to mammalian capped mRNAs. Genes Dev. 30, 1573.1588.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pause A., Méthot N., Svitkin Y., et al. 1994. Dominant negative mutants of mammalian translation initiation factor elF-4A define a critical role for elF-4F in capdependent and cap-independent initiation of translation. EMBO J. 13, 1205–1215.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Agalarov S.Ch., Sakharov P.A., Fattakhova D.Kh., et al. 2014. Internal translation initiation and eIF4F/ATP-independent scanning of mRNA by eukaryotic ribosomal particles. Sci. Rep. 4, 4438.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sakharov P.A., Agalarov S.Ch. 2016. Free initiation factors eIF4A and eIF4B are dispensable for translation initiation on uncapped mRNAs. Biochemistry (Moscow). 81, 1198–1204.CrossRefGoogle Scholar
  7. 7.
    Kopeina G.S., Afonina Z.A., Gromova K.V., et al. 2008. Step-wise formation of eukaryotic double-row polyribosomes and circular translation of polysomal mRNA. Nucleic Acids Res. 36, 2476–2478.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Shirokikh N.E., Spirin A.S. 2008. Poly(A) leader of eukaryotic mRNA bypasses the dependence of translation on initiation factors. Proc. Natl. Acad. Sci. U. S. A. 2105, 10738–10743.CrossRefGoogle Scholar
  9. 9.
    Agalarov S.C., Sogorin E.A., Shirokikh N.E., Spirin A.S. 2011. Insight into the structural organization of the omega leader of TMV RNA: The role of various regions of the sequence in the formation of a compact structure of the omega RNA. Biochem. Biophys. Res. Commun. 404, 250–253.CrossRefPubMedGoogle Scholar
  10. 10.
    Sakharov P.A., Sokolov A.S., Agalarov S.C. 2015. Nonhydrolyzable ATP analog 5′-adenylyl-imidodiphosphate (AMP-PNP) does not inhibit ATP-dependent scanning of leader sequence of mRNA, Biochemistry (Moscow). 80, 45–49.CrossRefGoogle Scholar
  11. 11.
    Gould P.S., Bird H., Easton A.J. 2005. Translation toeprinting assays using fluorescently labeled primers and capillary electrophoresis. Biotechniques. 38, 397–400.CrossRefPubMedGoogle Scholar
  12. 12.
    Pestova T.V., Kolupaeva V.G. 2002. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev. 16, 2906–2922.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dmitriev S.E., Terenin I.M., Dunaevsky Y.E., et al. 2003. Assembly of 48S translation initiation complexes from purified components with mRNAs that have some base pairing within their 5′ untranslated regions. Mol. Cell. Biol. 23, 8925–8933.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pause A., Methot N., Sonenberg N. 1993. The HRIGRXXR region of the DEAD box RNA helicase eukaryotic translation initiation factor 4A is required for RNA binding and ATP hydrolysis. Mol. Cell. Biol. 13, 6789–6798.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sonenberg N. 1981. ATP/Mg++-dependent cross-linking of cap binding proteins to the 5′ end of eukaryotic mRNA. Nucleic Acids Res. 9, 1643–1656.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Edery I., Humbelin M., Darveau A., et al. 1983. Involvement of eukaryotic initiation factor 4A in the cap recognition process. J. Biol. Chem. 258, 11398–11403.PubMedGoogle Scholar
  17. 17.
    Haghighat A., Sonenberg N. 1997. eIF4G dramatically enhances the binding of eIF4E to the mRNA 5′-cap structure. J. Biol. Chem. 272, 21677–21680.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations