Advertisement

Molecular Biology

, Volume 52, Issue 1, pp 103–107 | Cite as

Ligand-Induced Reassembly of GroEL/ES Chaperone In Vitro: Visualization by Electron Microscopy

  • N. A. Ryabova
  • O. M. Selivanova
  • G. V. Semisotnov
Structural Functional Analysis of Biopolymers and Their Complexes
  • 44 Downloads

Abstract

The products of the reassembly reaction of tetradecameric two-ring quaternary structure of GroEL chaperonin under the pressure of its heptameric co-chaperonin GroES have been visualized by electron microscopy. It has been shown that one-ring heptameric oligomers of GroEL have been formed at the beginning (after ~5 min) of the reaction, while at the final stage of the reaction (after ~70 min), both onering heptamers in complex with one GroES and two-rings tetradecamers in complexes with one (asymmetrical complex) or two (symmetrical complex) GroES heptamers are present. The relationship between the data of light scattering, native electrophoresis, and electron microscopy obtained earlier has been discussed.

Keywords

molecular chaperones GroEL/ES oligomeric protein reassembly electron microscopy negative staining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anfinsen C.B. 1973. Principles that govern the folding of protein chains. Science. 181, 223–230.CrossRefPubMedGoogle Scholar
  2. 2.
    Ellis R. 1987. Proteins as molecular chaperones. Nature. 328, 378–379.CrossRefPubMedGoogle Scholar
  3. 3.
    Laskey R.A., Honda B.M., Mills A.D., et al. 1978. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature. 275, 416–420.CrossRefPubMedGoogle Scholar
  4. 4.
    Frydman J. 2001. Folding of newly translated proteins in vivo: The role of molecular chaperones. Annu. Rev. Biochem. 70, 603–647.CrossRefPubMedGoogle Scholar
  5. 5.
    Hartl F.U., Bracher A., Hayer-Hartl M. 2011. Molecular chaperones in protein folding and proteostasis. Nature. 475, 324–332.CrossRefPubMedGoogle Scholar
  6. 6.
    Braig K., Otwinowski Z., Hegde R., et al. 1994. The crystal structure of the bacterial chaperonln GroEL at 2.8 Å. Nature. 371, 578–86.CrossRefPubMedGoogle Scholar
  7. 7.
    Hunt J.F., Weaver A.J., Landry S.J., et al. 1996. The crystal structure of the GroES co-chaperonin at 2.8 Å resolution. Nature. 379, 37–45.CrossRefPubMedGoogle Scholar
  8. 8.
    Xu Z., Horwich A.L., Sigler P.B. 1997. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature. 388, 741–750.CrossRefPubMedGoogle Scholar
  9. 9.
    Xu Z., Sigler P.B. 1998. GroEL/GroES: Structure and function of a two-stroke folding machine. J. Struct. Biol. 124, 129–141.CrossRefPubMedGoogle Scholar
  10. 10.
    Ryabova N.A., Marchenkov V.V., Marchenkova S.Y., Kotova N.V., Semisotnov G.V. 2013. Molecular chaperone GroEL/ES: Unfolding and refolding processes. Biochemistry. 78, 1405–1414.PubMedGoogle Scholar
  11. 11.
    Ryabova N., Marchenkov V., Kotova N., et al. 2014. Chaperonin GroEL eassembly: An effect of protein ligands and solvent composition. Biomolecules. 4, 458–473.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Marchenkov V.V., Ryabova N.A., Selivanova O.M., et al. 2016. GroEL/ES chaperonin: Unfolding and refolding reactions. Stress Environ. Regul. Gene Expr. Adapt. Bact. 2, 781–790.Google Scholar
  13. 13.
    Harris J.R., Pluckthun A., Zahn R. 1994. Transmission electron microscopy of GroEL, GroES, and the symmetrical GroEL/ES complex. J. Struct. Biol. 112, 216–230.CrossRefPubMedGoogle Scholar
  14. 14.
    Lissin N.M., Venyaminov S.Y., Girshovich A.S. 1990. (Mg-ATP)-dependent self-assembly of molecular chaperone GroEL. Nature. 348, 339–342.CrossRefPubMedGoogle Scholar
  15. 15.
    Corrales F.J., Fersht A.R. 1996. Toward a mechanism for GroEL center dot GroES chaperone activity: An ATPase-gated and -pulsed folding and annealing cage. Proc. Natl. Acad. Sci. U. S. A. 93, 4509–4512.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Surin A.K., Kotova N.V., Marchenkova S.Yu., et al. 1999. The Monomeric form of the molecular chaperone GroEL: Structure, stability, and oligomerization. Russ. J. Bioorg. Chem. 25 (5), 314–320.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • N. A. Ryabova
    • 1
  • O. M. Selivanova
    • 1
  • G. V. Semisotnov
    • 1
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations