Molecular Biology

, Volume 52, Issue 1, pp 7–14 | Cite as

Glycyl-tRNA Synthetase as a Potential Universal Regulator of Translation Initiation at IRES-I

  • E. Yu. NikonovaEmail author
  • A. O. Mihaylina
  • M. S. Nemchinova
  • M. B. Garber
  • O. S. Nikonov
Molecular Cell Biology


A full analysis has been conducted of the sequences and secondary structures of viral type-I or related IRESs identified in all of the elements that correspond to the previously described minimal fragment of the enterovirus C IRES, which mimics the glycine tRNA anticodon hairpin in the IRES structure and is necessary for the specific binding of glycyl—tRNA synthetase. Experiments on human glycyl—tRNA synthetase binding with the mRNA fragments of several taxonomically distant viruses showed that the binding constants of these complexes are similar. These results indicate that the regulation of translation initiation via glycyl—tRNA synthetase must be a universal mechanism for these viruses and the corresponding parts of their mRNAs must have similar spatial structures. Furthermore, at least one additional mRNA hairpin with the glycyl anticodon loop has been found in all analyzed viral type-I IRESs. It seems plausible that this extra hairpin is associated with the second RNA-binding site of the glycyl—tRNA synthetase dimer and stabilizes its complex with the viral mRNA.


Glycyl-tRNA synthetase picornaviruses enteroviruses poliovirus translational initiation IRES IRES I 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Komar A.A., Hatzoglou M. 2015. Exploring internal ribosome entry sites as therapeutic targets. Front. Oncol. 5, 233.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Belsham G.J. 2008. Divergent picornavirus IRES elements. Virus Res. 139, 183–192.CrossRefPubMedGoogle Scholar
  3. 3.
    Martinez-Salas E., Fransisco-Vellila R., Fernandes-Chamorro J., et al. 2015. Picornavirus IRES elements: RNA structure and host protein interactions. Virus Res. 206, 62–73.CrossRefPubMedGoogle Scholar
  4. 4.
    King A.M.Q., Adams M.J., Carstens E.B., et al. 2012. Virus taxonomy: Classification and nomenclature of viruses. In: Ninth Report of the International Committee on Taxonomy of Viruses. San Diego: Elsevier}.Google Scholar
  5. 5.
    Adams M.J., King A.M.Q., Carstens E.B. 2013. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2013). Arch. Virol. 158, 2023–2030.CrossRefPubMedGoogle Scholar
  6. 6.
    Adams M.J., Lefkowitz E.J., King A.M.Q., et al. 2014. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2014). Arch. Virol. 159, 2831–2841.CrossRefPubMedGoogle Scholar
  7. 7.
    Adams M.J., Lefkowitz E.J., King A.M.Q., et al. 2015. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2015). Arch. Virol. 160, 1837–1850.CrossRefPubMedGoogle Scholar
  8. 8.
    Adams M.J., Lefkowitz E.J., King A.M.Q., et al. 2016. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2016). Arch. Virol. 161, 2921–2949.CrossRefPubMedGoogle Scholar
  9. 9.
    Woo P.C., Lau S.K., Choi G.K., et al. 2012. Natural occurrence and characterization of two internal ribosome entry site elements in a novel virus, canine picodicistrovirus, in the picornavirus-like superfamily. J. Virol. 86, 2797–2808.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Boros Á., Pankovics P., Simmonds P., et al. 2015. Genome analysis of a novel, highly divergent picornavirus from common kestrel (Falco tinnunculus): The first non-enteroviral picornavirus with type-I-like IRES. Infect. Genet. Evol. 32, 425–431.CrossRefPubMedGoogle Scholar
  11. 11.
    Andreev D.E., Hirnet J., Terenin I.M., et al. 2012. Glycyl-tRNA synthetase specifically binds to the poliovirus IRES to activate translation initiation. Nucleic Acids Res. 40 (12), 5602–5614.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Asnani M., Pestova T.V., Hellen C.U. 2016. Initiation on the divergent Type I cadicivirus IRES: Factor requirements and interactions with the translation apparatus. Nucleic Acids Res. 44 (7), 3390–3407.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Nikonova E.Yu., Mihaylina A.O., Lekontseva N.V., et al. 2016. Determination of the minimal fragment of the poliovirus IRES that is necessary for the formation of a specific complex with the human glycyl-tRNA synthetase. Biophysics (Moscow). 61 (2), 233–240.CrossRefGoogle Scholar
  14. 14.
    Wienken C. J., Baaske P., Rothbauer U., et al. 2010. Protein-binding assays in biological liquids using microscale thermophoresis. Nat. Commun. 1, 100.CrossRefPubMedGoogle Scholar
  15. 15.
    Gruber A.R., Lorenz R., Bernhart S.H., et al. 2008. The Vienna RNA websuite. Nucleic Acids Res. 36 (Web Server issue), W70–W74.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Qin X., Hao Z., Tian Q., et al. 2014. Cocrystal structures of glycyl-tRNA synthetase in complex with tRNA suggest multiple conformational states in glycylation. J. Biol. Chem. 289 (29), 20359–20369.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sweeney T.R., Abaeva I.S., Pestova T.V., et al. 2014. The mechanism of translation initiation of type 1 picornavirus IRESs. EMBO J. 33, 76–92.CrossRefPubMedGoogle Scholar
  18. 18.
    Shiba K., Schimmel P., Motegi H., et al. 1994. Human glycyl-tRNA synthetase. Wide divergence of primary structure from bacterial counterpart and species-specific aminoacylation}. J. Biol. Chem. 269, 30049–30055.PubMedGoogle Scholar
  19. 19.
    Brodersen D.E., Clemons W.M., Carter A.P., et al. 2002. Crystal structure of 30S ribosomal subunit from Thermus thermophilus: Structure of the proteins and their interactions with 16S RNA. J. Mol. Biol. 316, 725–768.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • E. Yu. Nikonova
    • 1
    Email author
  • A. O. Mihaylina
    • 1
  • M. S. Nemchinova
    • 1
  • M. B. Garber
    • 1
  • O. S. Nikonov
    • 1
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations