Advertisement

Molecular Biology

, Volume 52, Issue 1, pp 96–102 | Cite as

Model of the Complex of the Human Glycyl-tRNA Synthetase Anticodon-Binding Domain with IRES I Fragment

  • O. S. Nikonov
  • M. S. Nemchinova
  • V. G. Klyashtornii
  • E. Yu. Nikonova
  • M. B. Garber
Structural Functional Analysis of Biopolymers and Their Complexes
  • 18 Downloads

Abstract

The currently available structural information is insufficient for a detailed analysis of interactions between human glycyl-tRNA synthetase (GARS) and enterovirus IRESs. At the same time, this information is required in order to understand how this IRES trans-acting factor (ITAF) functions during viral mRNA translation, which is in turn crucial for the development of direct-action antiviral agents. In this paper, a theoretical model of the complex between a cadicivirus A IRES fragment and the anticodon-binding domain of human GARS is constructed using molecular dynamics simulation based on all of the available structural and biochemical data. The proposed model enables the structural interpretation of the previously obtained biochemical data.

Keywords

glycyl-tRNA synthetase picornaviruses enteroviruses poliovirus cadicivirus A translation initiation IRES IRES I tRNAGly CDV 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spriggs K.A., Bushell M., Mitchell S.A., et al. 2005. Internal ribosome entry segment-mediated translation during apoptosis: the role of IRES-trans-acting factors. Cell Death Differ. 12, 585–591.CrossRefPubMedGoogle Scholar
  2. 2.
    Bedard K.M., Daijogo S., Semler B.L. 2007. A nucleocytoplasmic SR protein functions in viral IRES-mediated translation initiation. EMBO J. 26, 459–467.CrossRefPubMedGoogle Scholar
  3. 3.
    Lin J.Y., Li M.L., Shih S.R. 2009. Far upstream element binding protein 2 interacts with enterovirus 71 internal ribosomal entry site and negatively regulates viral translation. Nucleic Acids Res. 37, 47–59.CrossRefPubMedGoogle Scholar
  4. 4.
    Pacheco A., Lopez de Quinto S., Ramajo J., et al. 2009. A novel role for Gemin5 in mRNA translation. Nucleic Acids Res. 37, 582–590.CrossRefPubMedGoogle Scholar
  5. 5.
    Andreev D.E., Hirnet J., Terenin I.M., et al. 2012. Glycyl-tRNA synthetase specifically binds to the poliovirus IRES to activate translation initiation. Nucleic Acids Res. 40, 5602–5614.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Freist W., Logan D.T., Gauss D.H. 1996. Glycyl-tRNA syntetase. Biol. Chem. Hoppe Seyler. 377, 343–356.PubMedGoogle Scholar
  7. 7.
    Logan D.T., Mazauric M.H., Kern D., et al. 1995). Crystal structure of glycyl-tRNA synthetase from Thermus thermophilus. EMBO J. 14, 4156–4167.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Tan K., Zhou M., Zhang R., et al. 2012. The crystal structure of the α-subunit of the α2β2 tetrameric glycyl-tRNA syntetase. J. Struct. Func. Genomics 13, 233–239.CrossRefGoogle Scholar
  9. 9.
    Xie W., Nangle L. A., Zhang W., et al. 2007. Longrange structural effects of a Charcot-Marie-Tooth disease-causing mutation in human glycyl-tRNA synthetase. Proc. Natl. Acad. Sci. U. S. A. 104, 9976–9981.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nangle L. A., Zhang W., Xie W., et al. 2007. Charcot-Marie-Tooth disease-associated mutant tRNA synthetases linked to altered dimer interface and neurite distribution defect. Proc. Natl. Acad. Sci. U. S. A. 104, 11239–11244.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Qin X., Hao Z., Tian Q., et al. 2014. Cocrystal structures of glycyl-tRNA synthetase in complex with tRNA suggest multiple conformational states in glycylation. J. Biol. Chem. 289, 20359–20369.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Qin X., Deng X., Chen L., Xie W. 2016. Crystal structure of the wild-type human GlyRS bound with tRNA(Gly) in a productive conformation. J. Mol. Biol. 428, 3603–3613.CrossRefPubMedGoogle Scholar
  13. 13.
    Chang A.T., Nikonowich E.P. 2012. Solution NMR analysis of the anticodon arms of proteinogenic and non-proteinogenic tRNAGly. Biochemistry. 51, 3662–3674.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nikonova E.Y., Mihaylina A.O., Lekontseva N.V., et al. 2016. Determination of the minimal fragment of the poliovirus IRES that is necessary for the formation of a specific complex with the human glycyl-tRNA synthetase. Biophysics (Moscow). 61 (2), 233–240.CrossRefGoogle Scholar
  15. 15.
    Nikonova E.Y., Mihaylina A.O., Nemshinova M.S., et al. 2018. Glycyl-tRNA synthetase: A possible universal regulator of translation initiation in type I IRES. Mol. Biol. (Moscow). 52(1), 00–000.CrossRefGoogle Scholar
  16. 16.
    Selmer M., Dunham C.M., Murphy F.V., et al. 2006. Structure of the 70S ribosome complexed with mRNA and tRNA. Science. 313, 1935–2006.CrossRefPubMedGoogle Scholar
  17. 17.
    Gabdulkhakov A., Nikonov S., Garber M. 2013. Revisiting the Haloarcula marismortui 50S ribosomal subunit model. Acta Crystallogr. D: Biol. Crystallogr. 69, 997–1004.CrossRefGoogle Scholar
  18. 18.
    Hess B., Kutzner C., Spoel D.V.D. 2008. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Chem. Theor. Comput. 4, 435–447.CrossRefGoogle Scholar
  19. 19.
    MacKerell A.D. Jr., Feig M., Brooks C.L. 3rd. 2004. Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 25, 1400–1415.CrossRefPubMedGoogle Scholar
  20. 20.
    MacKerell A.D., Bashford D., Bellott M., et al. 1998. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 102, 3586–3616.CrossRefPubMedGoogle Scholar
  21. 21.
    Hess B., Bekker H., Berendsen H.J.C., et al. 1997. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472.CrossRefGoogle Scholar
  22. 22.
    Darden T., York D., Pedersen L. 1993. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092.CrossRefGoogle Scholar
  23. 23.
    Essmann U., Perera L., Berkowitz M.L. 1995. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593.CrossRefGoogle Scholar
  24. 24.
    Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F., et al. 1984. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690.CrossRefGoogle Scholar
  25. 25.
    Jorgensen W.L., Chandrasekhar J., Madura J.D. et al. 1983. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • O. S. Nikonov
    • 1
  • M. S. Nemchinova
    • 1
  • V. G. Klyashtornii
    • 1
  • E. Yu. Nikonova
    • 1
  • M. B. Garber
    • 1
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations