Advertisement

Molecular Biology

, Volume 52, Issue 1, pp 84–90 | Cite as

Identification of Ribosomal Protein L1-Binding Sites in Thermus thermophilus and Thermotoga maritima mRNAs

  • A. O. Mikhaylina
  • O. S. Kostareva
  • E. Y. Nikonova
  • M. B. Garber
  • S. V. Tishchenko
Structural Functional Analysis of Biopolymers and Their Complexes
  • 10 Downloads

Abstract

The conserved two-domain ribosomal protein (r-protein) L1 is a structural part of the L1 stalk of the large ribosomal subunit and regulates the translation of the operon that comprises its own gene. The regulatory properties of the bacterial r-protein L1 have only been studied in detail for Escherichia coli; however, there were no such studies for other bacteria, in particular, Thermus thermophilus and Thermotoga maritima, which are more evolutionarily ancient. It is known that domain I of the r-protein L1 might have regulatory properties of the whole protein. The aim of this study was to identify regulatory sites on the mRNA of T. thermophilus and T. maritima that interact with r-proteins L1, as well as with their domains I from the same organisms. An analysis of the mRNA of the L11 operon T. thermophilus showed the presence of one potential binding site of the L1 r-protein, two such regions were found also in the mRNA sequence of the L11 operon of T. maritima. The dissociation constants for the L1 proteins from T. thermophilus and T. maritima and their domains I with mRNA fragments from the same organisms that contain the supposed L1-binding sites were determined by surface plasmon resonance. It has been shown that the ribosomal proteins L1 as their domains I bind specific fragments of mRNA from the same organisms that may suggest regulatory activity of the L1 protein in the T. thermophilus and T. maritima and conservatism of the principles of L1-RNA interactions.

Keywords

ribosomal protein L1 L11 ribosomal protein operon translational regulation Thermus thermophilus Thermotoga maritima surface plasmon resonance equilibrium dissociation constant 

Abbreviations

rRNA

ribosomal RNA

mRNA

messenger RNA

tRNA

transfer RNA

TmaL1

ribosomal protein L1 from T. maritima

TmaL1dI

domain I of the L1 ribosomal protein from T. maritima

TthL1

L1 ribosomal protein from T. thermophilus

TthL1dI

domain I of the L1 ribosomal protein from T. thermophilus

Tma mRNA

fragment of mRNA L11-operon from T. maritima

Tth mRNA

fragment of mRNA L11-operon from T. thermophilus

rplK

gene of the L11 protein

rplA

gene of the L1 protein

SPR

surface plasmon resonance

n. r.

nucleotide residue

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nomura M., Yates J.L., Dean D., et al. 1980. Feedback regulation of ribosomal protein gene expression in Escherichia coli: Structural homology of ribosomal RNA and ribosomal protein mRNA. Proc. Natl. Acad. Sci. U. S. A. 77, 7084–7088.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Nevskaya N., Tishchenko S., Volchkov S., et al. 2006. New insights into the interaction of ribosomal protein L1 with RNA. J. Mol. Biol. 355, 747–759.CrossRefPubMedGoogle Scholar
  3. 3.
    Tishchenko S., Gabdulkhakov A., Nevskaya N., et al. 2012. High-resolution crystal structure of the isolated ribosomal L1 stalk. Acta Crystallogr. D: Biol. Crystallogr. 68 (8), 1051–1057.CrossRefGoogle Scholar
  4. 4.
    Baughman G., Nomura M. 1983. Localization of the target site for translational regulation of the L11 operon and direct evidence for translational coupling in Escherichia coli. Cell. 34, 979–988.CrossRefPubMedGoogle Scholar
  5. 5.
    Fu Y., Deiorio-Haggar K., Anthony J., et al. 2013. Most RNAs regulating ribosomal protein biosynthesis in Escherichia coli are narrowly distributed to Gammaproteobacteria. Nucleic Acids Res. 41, 3491–3503.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Köhrer C., Mayer C., Neumair O., et al. 1998. Interaction of ribosomal L1 proteins from mesophilic and thermophilic Archaea and Bacteria with specific L1- binding sites on 23S rRNA and mRNA. Eur. J. Biochem. 256, 97–105.CrossRefPubMedGoogle Scholar
  7. 7.
    Hanner M., Mayer C., Köhrer C., et al. 1994. Autogenous translational regulation of the ribosomal MvaL1 operon in the archaebacterium Methanococcus vannielii. J. Bacteriol. 176, 409–418.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yates J., Nomura M. 1981. Feedback regulation of ribosomal protein synthesis in E. coli: Localization of the mRNA target sites for repressor action of ribosomal protein L1. Cell. 24, 243–249.CrossRefPubMedGoogle Scholar
  9. 9.
    Baughmann G., Nomura M. 1983. Localization of the target site for translational regulation of the L11 operon and direct evidence for translational coupling in Escherichia coli. Cell. 34, 979–988.CrossRefGoogle Scholar
  10. 10.
    Korepanov A.P., Kostareva O.S., Bazhenova M.V., et al. 2015. Studying the properties of domain I of the ribosomal protein L1: Incorporation into ribosome and regulation of the L1 operon expression. Protein J. 34, 103–110.CrossRefPubMedGoogle Scholar
  11. 11.
    Mikhaylina A.O., Kostareva O.S., Nikonova E.Y., Tishchenko S.V. 2016. Analysis of the domain I of archaeal ribosomal protein L1 interaction with specific RNA fragments. Modern Trends Biol. Phys. Chem. 1, 239–243.Google Scholar
  12. 12.
    Tishchenko S., Nikonova E., Kljashtorny V., et al. 2007. Domain I of ribosomal protein L1 is sufficient for specific RNA binding. Nucleic Acids Res. 35, 7389–7395.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Studier F.W., Rosenberg A.H., Dunn J.J., Dubendorff J.W. 1990. Use of T7 RNA polymerase to direct expression of cloned genes. J. Methods Enzymol. 185, 60–89.CrossRefGoogle Scholar
  14. 14.
    Katsamba P.S., Park S., Laird-Offringa I.A. 2002. Kinetic studies of RNA.protein interactions using surface plasmon resonance. Methods. 26, 95–104.CrossRefPubMedGoogle Scholar
  15. 15.
    Nevskaya N., Tishchenko S., Volchkov S. et al. 2006. New insights into the interaction of ribosomal protein L1 with RNA. J. Mol. Biol. 355, 747–759.Google Scholar
  16. 16.
    Kraft A., Lutz C., Lingenhel A., et al. 1999. Control of ribosomal protein L1 synthesis in mesophilic and thermophilic archaea. Genetics. 152, 1363–1372.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Mayer C., Kohrer C., Grobner P., et al. 1998. MvaL1 autoregulates the synthesis of the three ribosomal proteins encoded on the MvaL1 operon of the archaeon Methanococcus vannielii by inhibiting its own translation before or at the formation of the first peptide bond. Mol. Microbiol. 27, 455–468.CrossRefPubMedGoogle Scholar
  18. 18.
    Nikonov S., Nevskaya N., Eliseikina I., et al. 1996. Crystal structure of the RNA binding ribosomal protein L1 from Thermus thermophilus. EMBO J. 15, 1350–1359.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Tishchenko S., Nikonova E., Nikulin A., et al. 2006. Structure of the ribosomal protein L1.mRNA complex at 2.1 Å resolution: Common features of crystal packing of L1-RNA complexes. Acta Crystogr. D. 62, 1545–1554.CrossRefGoogle Scholar
  20. 20.
    Tishchenko S., Nikonova E., Kostareva O., et al. 2011. Structural analysis of interdomain mobility in ribosomal L1 proteins. Acta Crystallogr. D. 67, 1023–1027.CrossRefPubMedGoogle Scholar
  21. 21.
    Tishchenko S., Kljashtorny V., Kostareva O., et al. 2008. Domain II of Thermus thermophilus ribosomal protein L1 hinders recognition of its mRNA. J. Mol. Biol. 383, 301–305.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. O. Mikhaylina
    • 1
  • O. S. Kostareva
    • 1
  • E. Y. Nikonova
    • 1
  • M. B. Garber
    • 1
  • S. V. Tishchenko
    • 1
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations