Molecular Biology

, Volume 52, Issue 1, pp 75–83 | Cite as

Artificial Cysteine Bridges on the Surface of Green Fluorescent Protein Affect Hydration of Its Transition and Intermediate States

  • T. N. MelnikEmail author
  • G. S. Nagibina
  • A. K. Surin
  • K. A. Glukhova
  • B. S. Melnik
Structural Functional Analysis of Biopolymers and Their Complexes


Studying the effect of cysteine bridges on different energy levels of multistage folding proteins will enable a better understanding of the process of folding and functioning of globular proteins. In particular, it will create prospects for directed change in the stability and rate of protein folding. In this work, using the method of differential scanning microcalorimetry, we have studied the effect of three cysteine bridges introduced in different structural elements of the green fluorescent protein on the denaturation enthalpies, activation energies, and heat-capacity increments when this protein passes from native to intermediate and transition states. The studies have allowed us to confirm that, with this protein denaturation, the process hardly damages the structure initially, but then changes occur in the protein structure in the region of 4–6 beta sheets. The cysteine bridge introduced in this region decreases the hydration of the second transition state and increases the hydration of the second intermediate state during the thermal denaturation of the green fluorescent protein.


green fluorescent protein differential scanning calorimetry kinetics protein denaturation mutational analysis introduction of SS bonds transition state intermediate state 



green fluorescent protein


differential; scanning calorimetry


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Betz S.F. 1993. Disulfide bonds and the stability of globular proteins. Protein Sci. 2, 1551–1558.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Dombkowski A.A., Sultana K.Z., Craig D.B. 2014. Protein disulfide engineering. FEBS Lett. 588, 206–212.CrossRefPubMedGoogle Scholar
  3. 3.
    Galzitskaya O.V., Finkelstein A.V. 1999. A theoretical search for folding/unfolding nuclei in three-dimensional protein structures. Proc. Natl. Acad. Sci. U. S. A. 96, 11299–11304.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cooper A., Eyles S.J., Radford S.E., et al. 1992. Thermodynamic consequences of the removal of a disulphide bridge from hen lysozyme. J. Mol. Biol. 225, 939–943.CrossRefPubMedGoogle Scholar
  5. 5.
    Clarke J., Hounslow A.M., Bond C.J., et al. 2000. The effects of disulfide bonds on the denatured state of barnase. Protein Sci. 9, 2394–2404.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Anderson W.D., Fink A.L., Perry L.J., et al. 1990. Effect of an engineered disulfide bond on the folding of T4 lysozyme at low temperatures. Biochemistry. 29, 3331–3337.CrossRefPubMedGoogle Scholar
  7. 7.
    Siadat O.R., Lougarre A., Lamouroux L., et al. 2006. The effect of engineered disulfide bonds on the stability of Drosophila melanogaster acetylcholinesterase. BMC Biochem. 7, 12.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Matsumura M., Becktel W.J., Levitt M., et al. 1989. Stabilization of phage T4 lysozyme by engineered disulfide bonds. Proc. Natl. Acad. Sci. U. S. A. 86, 6562–6566.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Santos J., Risso V.A., Sica M.P., et al. 2007. Effects of serine-to-cysteine mutations on beta-lactamase folding. Biophys. J. 93, 1707–1718.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Morton V.L., Friel C.T., Allen L.R., et al. 2007. The effect of increasing the stability of non-native interactions on the folding landscape of the bacterial immunity protein Im9. J. Mol. Biol. 371, 554–568.CrossRefPubMedGoogle Scholar
  11. 11.
    Melnik T.N., Majorina M.A., Larina D.S., et al. 2014. Independent of their localization in protein the hydrophobic amino acid residues have no effect on the molten globule state of apomyoglobin and the disulfide bond on the surface of apomyoglobin stabilizes this intermediate state. PLOS ONE. 9, e98645.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mason J.M., Cliff M.J., Sessions R.B., et al. (2005. Low-energy pathways and non-native interactions:The influence of artificial disulfide bridges on the mechanism of folding. J. Biol. Chem. 280, 40494–40499.Google Scholar
  13. 13.
    Fersht A.R. 1995. Mapping the structures of transition states and intermediates in folding: Delineation of pathways at high resolution. Philos. Trans. R. Soc. L. B: Biol. Sci. 348, 11–15.CrossRefGoogle Scholar
  14. 14.
    Fersht A.R., Sato S. 2004. Phi-value analysis and the nature of protein-folding transition states. Proc. Natl. Acad. Sci. U. S. A. 101, 7976–7981.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Otzen D.E., Itzhaki L.S., elMasry N.F., et al. 1994. Structure of the transition state for the folding/unfolding of the barley chymotrypsin inhibitor 2 and its implications for mechanisms of protein folding. Proc. Natl. Acad. Sci. U. S. A. 91, 10 422–10 425.CrossRefGoogle Scholar
  16. 16.
    Melnik T.N., Povarnitsyna T.V, Glukhov A.S., et al. 2012. Multi-state proteins: Approach allowing experimental determination of the formation order of structure elements in the green fluorescent protein. PLoS ONE. 7, e48604.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Melnik T.N., Povarnitsyna T.V, Glukhov A.S., et al. 2011. Sequential melting of two hydrophobic clusters within the green fluorescent protein GFP-cycle3. Biochemistry. 50, 7735–7744.CrossRefPubMedGoogle Scholar
  18. 18.
    Melnik T., Povarnitsyna T., Solonenko H., et al. 2011. Studies of irreversible heat denaturation of green fluorescent protein by differential scanning microcalorimetry. Thermochim. Acta. 512, 71–75.CrossRefGoogle Scholar
  19. 19.
    Melnik B.S., Povarnitsyna T.V., Melnik T.N. 2009. Can the fluorescence of green fluorescent protein chromophore be related directly to the nativity of protein structure? Biochem. Biophys. Res. Commun. 390, 1167–1170.CrossRefGoogle Scholar
  20. 20.
    Fukuda H., Arai M., Kuwajima K. 2000. Folding of green fluorescent protein and the cycle3 mutant. Biochemistry. 39, 12025–12032.CrossRefPubMedGoogle Scholar
  21. 21.
    Ward W.W., Bokman S.H. 1982. Reversible denaturation of Aequorea green fluorescent protein: Physical separation and characterization of the renatured protein. Biochemistry. 21, 4535–4540.CrossRefPubMedGoogle Scholar
  22. 22.
    Senin A.A., Potekhin S.A., Tiktopulo E.I., et al. 2000. Differential scanning microcalorimetr SCAL-1. J. Therm. Anal. Cal. 62, 153–160.CrossRefGoogle Scholar
  23. 23.
    Privalov P.L., Potekhin S.A. 1986. Scanning microcalorimetry in studying temperature-induced changes in proteins. In: Methods Enzymjlogy, vol. 131. Eds. Hirs C.H.W., Timasheff S.N. Orlando, San Diego: Academic Press, pp. 1–51.Google Scholar
  24. 24.
    Lyubarev A.E., Kurganov B.I. 1998. Modeling of irreversible thermal protein denaturation at varying temperature: 1. The model involving two consecutive irreversible steps. Biochemystry (Moscow). 63, 434–440.Google Scholar
  25. 25.
    Melnik B.S., Molochkov N.V., Prokhorov D.A., et al. 2011. Molecular mechanisms of the anomalous thermal aggregation of green fluorescent protein. Biochim. Biophys. Acta. 1814, 1930–1939.CrossRefPubMedGoogle Scholar
  26. 26.
    Huang J.R., Hsu S.T., Christodoulou J., et al. 2008. The extremely slow-exchanging core and acid-denatured state of green fluorescent protein. HFSP. J. 2, 378–387.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Enoki S., Maki K., Inobe T., et al. 2006. The equilibrium unfolding intermediate observed at pH 4 and its relationship with the kinetic folding intermediates in green fluorescent protein. J. Mol. Biol. 361, 969–982.CrossRefPubMedGoogle Scholar
  28. 28.
    Enoki S., Saeki K., Maki K., et al. 2004. Acid denaturation and refolding of green fluorescent protein. Biochemistry. 43, 14238–14248.CrossRefPubMedGoogle Scholar
  29. 29.
    Kent K. P., Childs W., Boxer S.G. 2008. Deconstructing green fluorescent protein. J. Am. Chem. Soc. 130, 9664–9665.CrossRefPubMedGoogle Scholar
  30. 30.
    Melnik B. S., Povarnitsyna T.V., Glukhov A.S., et al. 2012. SS-stabilizing proteins rationally: Intrinsic disorder-based design of stabilizing disulphide bridges in GFP. J. Biomol. Struct. Dyn. 29, 815–824.CrossRefPubMedGoogle Scholar
  31. 31.
    Stepanenko O.V., Verkhusha V.V., Kazakov V.I., et al. 2004. Comparative studies on the structure and stability of fluorescent proteins EGFP, zFP506, mRFP1, ‘dimer2’, and DsRed1. Biochemistry. 43, 14913–14923.CrossRefPubMedGoogle Scholar
  32. 32.
    Huang J.R., Craggs T.D., Christodoulou J., et al. 2007. Stable intermediate states and high energy barriers in the unfolding of GFP. J. Mol. Biol. 370, 356–371.CrossRefPubMedGoogle Scholar
  33. 33.
    Potekhin S.A., Kovrigin E.L. 1998. Folding under unequilibrium conditions as a possible reason for partial irreversibility of heat-denatured proteins: Computer simulation study. Biophys.Chem. 73, 241–248.CrossRefPubMedGoogle Scholar
  34. 34.
    Privalov P.L. 1979. Stability of proteins: Small globular proteins. Adv. Protein Chem. 33, 167–241.CrossRefPubMedGoogle Scholar
  35. 35.
    Privalov P.L., Khechinashvili N.N. 1974. A thermodynamic approach to the problem of stabilization of globular protein structure: A calorimetric study. J. Mol. Biol. 86, 665–684.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • T. N. Melnik
    • 1
    Email author
  • G. S. Nagibina
    • 1
  • A. K. Surin
    • 1
  • K. A. Glukhova
    • 1
  • B. S. Melnik
    • 1
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations