Molecular Biology

, Volume 52, Issue 1, pp 91–95 | Cite as

Influence of Nonconserved Regions of L1 Protuberance of Thermus thermophilus Ribosome on the Affinity of L1 Protein to 23s rRNA

  • O. S. Kostareva
  • N. A. Nevskaya
  • S. V. Tishchenko
  • A. G. Gabdulkhakov
  • M. B. Garber
  • S. V. Nikonov
Structural Functional Analysis of Biopolymers and Their Complexes


The L1 protuberance of the ribosome includes two domain ribosomal protein L1 and three helices of 23S rRNA (H76, H77, and H78) with interconnecting loops A and B. Helix 78 consists of two parts, i.e., H78a and H78b. A comparison of the available structural data of L1-RNA complexes with the obtained kinetic data made it possible to determine the influence of the nonconserved regions of Thermus thermophilus L1-protuberance on the mutual affinity of the L1 protein and 23S rRNA. It has been shown that the N-terminal helix of the protein and 78b helix of 23S rRNA are essential for the formation of an additional intermolecular contact, which is separated in the protein from the main site of L1-rRNA interaction by a flexible connection. This results in a rise in the TthL1-rRNA affinity. At the same time, the elongation of the 76 helix has no effect on rRNA-protein binding.


L1 ribosomal protein 23S rRNA binding kinetics surface plasmon resonance (SPR) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gourse R.L., Sharrock R.A., Nomura M. 1986. Control of ribosome synthesis in Escherichia coli. In Structure, Function, and Genetics of Ribosomes. Eds. Hardesty B., Kramer G. New York: Springer, 766–788.CrossRefGoogle Scholar
  2. 2.
    Kraft A., Lutz C., Lingenhel A., et al. 1999. Control of ribosomal protein L1 synthesis in mesophilic and thermophilic archaea. Genetics. 152, 1363–1372.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Baier G., Piendl W., Redl B., et al. 1990. Structure, organization and evolution of the L1 equivalent ribosomal protein gene of the archaebacterium Methanococcus vannielii. Nucleic Acids Res. 18, 719–724.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hanner M., Mayer C., Kohrer C., et al. 1994. Autogenous translational regulation of the ribosomal MvaL1 operon in the archaebacterium Methanococcus vannielii. J. Bacteriol. 176, 409–418.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nikonov S., Nevskaya N., Eliseikina I., et al. 1996. Crystal structure of the RNA-binding ribosomal protein L1 from Thermus thermophilus. EMBO J. 15, 1350–1359.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Unge J., Al-Karadaghi S., Liljas A., et al. 1997. A mutant form of the ribosomal protein L1 reveals conformational flexibility. FEBS Lett. 411, 53–59.CrossRefPubMedGoogle Scholar
  7. 7.
    Nevskaya N., Tishchenko S., Fedorov R., et al. 2000. Archaeal ribosomal protein L1: The structure provides new insights into RNA binding of the L1 protein family. Structure. 8, 363–371.CrossRefPubMedGoogle Scholar
  8. 8.
    Nevskaya N., Tishchenko S., Paveliev M., et al. 2002. Structure of ribosomal protein L1 from Methanococcus thermolithotrophicus. Functionally important structural invariants on the L1 surface. Acta Crystallogr. D: Biol. Crystallogr. 58, 1023–10CrossRefGoogle Scholar
  9. 9.
    Nikonova E.Yu., Tishchenko S.V., Gabdulkhakov A.G., et al. 2011. Crystal structure of ribosomal protein L1 from bacterium Aquifex aeolicus. Crystallogr. Repts. 56, 603–607.CrossRefGoogle Scholar
  10. 10.
    Nikulin A., Eliseikina I., Tishchenko S., et al. 2003. Structure of the L1 protuberance in the ribosome. Nat. Struct. Biol. 10, 104–108.CrossRefPubMedGoogle Scholar
  11. 11.
    Tishchenko S., Gabdulkhakov A., Nevskaya N., et al. 2012. High-resolution crystal structure of the isolated ribosomal L1 stalk. Acta Crystallogr. D: Biol. Crystallogr. 68, 1051–1057.CrossRefGoogle Scholar
  12. 12.
    Nevskaya N., Tishchenko S., Gabdoulkhakov A., et al. 2005. Ribosomal protein L1 recognizes the same specific structural motif in its target sites on the autoregulatory mRNA and 23S rRNA. Nucleic Acids Res. 33, 478–485.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tishchenko S., Nikonova E., Nikulun A., et al. 2006. Structure of the ribosomal protein L1-mRNA complex at 2.1 resolution: Common features of crystal packing of L1.RNA complexes. Acta Crystallogr. D: Biol. Crystallogr. 62, 1545–1554.CrossRefGoogle Scholar
  14. 14.
    Nevskaya N., Tishchenko S., Volchkov S., et al. 2006. New insights into the interaction of ribosomal protein L1 with RNA. J. Mol. Biol. 355, 747–759.CrossRefPubMedGoogle Scholar
  15. 15.
    Tishchenko S., Nikonova E., Kljashtorny V., et al. 2007. Domain I of ribosomal protein L1 is sufficient for specific RNA binding. Nucleic Acids Res. 35, 7389–7395.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Draper D.E. 1989. How do proteins recognize specific RNA sites? New clues from autogenously regulated ribosomal proteins. Trends Biochem. Sci. 14, 335–338.CrossRefPubMedGoogle Scholar
  17. 17.
    Tishchenko S., Kljashtorny V., Kostareva O., et al. 2008. Domain II of Thermus thermophilus ribosomal protein L1 hinders recognition of its mRNA. J. Mol. Biol. 383, 301–305.CrossRefPubMedGoogle Scholar
  18. 18.
    Eliseikina I., Avliyakulov N., Grishkovskaya I., et al. 1996. RNA-binding properties of ribosomal protein L1 from Thermus thermophilus. Biochemistry (Moscow). 61, 1461–1464.Google Scholar
  19. 19.
    Katsamba P.S., Park S., Laird-Offringa I.A. 2002. Kinetic studies of RNA.protein interactions using surface plasmon resonance. Methods. 26, 95–104.CrossRefPubMedGoogle Scholar
  20. 20.
    Kostareva O., Tishchenko S., Nikonova E., et al. 2011. Disruption of shape complementarity in the ribosomal protein L1.RNA contact region does not hinder specific recognition of the RNA target site. J. Mol. Recognit. 24, 524–532.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • O. S. Kostareva
    • 1
  • N. A. Nevskaya
    • 1
  • S. V. Tishchenko
    • 1
  • A. G. Gabdulkhakov
    • 1
  • M. B. Garber
    • 1
  • S. V. Nikonov
    • 1
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations