Molecular Biology

, Volume 52, Issue 1, pp 42–51 | Cite as

Amyloid Core Wild-Type Apomyoglobin and Its Mutant Variants Is Formed by Different Regions of the Polypeptide Chain

  • N. S. Katina
  • E. I. Grigorashvili
  • M. Yu. Suvorina
  • N. B. Ilyina
  • N. A. Ryabova
  • O. M. Selivanova
  • A. K. Surin
Structural Functional Analysis of Biopolymers and Their Complexes


As has been recently shown, the toxicity of protein aggregates is determined by their structure. Therefore, special attention has been focused on the search for factors that specify the structural features of formed amyloid fibrils. The effect of amino acid substitutions in apomyoglobin on the structural characteristics of its amyloid aggregates has been analyzed. The morphology and secondary structure of amyloids of the wild-type protein and its mutant variants Val10Ala, Val10Phe, and Trp14Phe have been compared, and the regions involved in intermolecular interactions in fibrils have been determined using limited proteolysis and mass spectrometry. No considerable differences have been found in the morphology (shape, length, or diameter) or the content (percentage) of the cross-β structure of apomyoglobin amyloids and its mutant variants. Amyloid cores of wild-type apomyoglobin and variants with Val10Phe and Trp14Phe substitutions have been formed by different regions of the polypeptide chain. The case study of apomyoglobin demonstrates that the location of amyloidogenic regions in the polypeptide chain of wild-type protein and its mutant forms can differ. Thus, possible structural changes in amyloids resulting from amino acid substitutions should be taken into account when studying phenotype aggregation.


amyloids apomyoglobin limited proteolysis polymorphism of amyloids mass spectrometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dobson C.M. 1999. Protein misfolding, evolution and disease. Trends Biochem. Sci. 24, 329–332.CrossRefPubMedGoogle Scholar
  2. 2.
    Fandrich M., Dobson C.M. 2002. The behaviour of polyamino acids reveals an inverse side chain effect in amyloid structure formation. EMBO J. 21, 5682–5690.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dobson C.M. 2003. Protein folding and misfolding. Nature. 426, 884–890.CrossRefPubMedGoogle Scholar
  4. 4.
    Makin O.S., Atkins E., Sikorski P., et al. 2005. Molecular basis for amyloid fibril formation and stability. Proc. Natl. Acad. Sci. U. S. A. 102, 315–320.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chiti F., Dobson C.M. 2006. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366.CrossRefPubMedGoogle Scholar
  6. 6.
    Stefani M. 2007. Generic cell dysfunction in neurodegenerative disorders: Role of surfaces in early protein misfolding, aggregation, and aggregate cytotoxicity. Neuroscientist. 13, 519–531.CrossRefPubMedGoogle Scholar
  7. 7.
    Mannini B., Mulvihill E., Sqromo S., et al. 2014. Toxicity of protein oligomers is rationalized by a function combining size and surface hydrophobicity. ASC Chem. Biol. 9, 2309–2317.Google Scholar
  8. 8.
    Campioni S., Mannini B., Zampagni M., et al. 2010. A causative link between the structure of aberrant protein oligomers and their toxicity. Nat. Chem. Biol. 6, 140–147.CrossRefPubMedGoogle Scholar
  9. 9.
    Mocanu M.M., Ganea C., Siposova K., et al. 2014. Polymorphism of hen egg white lysozyme amyloid fibrils influences the cytotoxicity in LLC-PK1 epithelial kidney cells. Int. J. Biol. Macromol. 65, 176–187.CrossRefPubMedGoogle Scholar
  10. 10.
    Petkova A.T., Leapman R.D., Guo Z., et al. 2005. Selfpropagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils. Science. 307, 262–265.CrossRefPubMedGoogle Scholar
  11. 11.
    Seilheimer B., Bohrmann B., Bondolfi L., et al. 1997. The toxicity of the Alzheimer’s beta-amyloid peptide correlates with a distinct fiber morphology. J. Struct. Biol. 119, 59–71.CrossRefPubMedGoogle Scholar
  12. 12.
    Tycko R. 2015. Amyloid polymorphism: Structural basis and neurobiological relevance. Neuron. 86, 632–645.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jannone J.M., Grigg J.I., Aguirre L.M., et al. 2016. Electrostatic interactions at N-and C-termini determine fibril polymorphism in serum amyloid A fragments. J. Phys. Chem. B. 120, 10258–10268.CrossRefPubMedGoogle Scholar
  14. 14.
    Tycko R. 2014. Physical and structural basis for polymorphism in amyloid fibrils. Protein Sci. 21, 1528–1539.CrossRefGoogle Scholar
  15. 15.
    Selivanova O.M., Surin A.K., Marchenkov V.V., et al. 2016. The mechanism underlying amyloid polymorphism is opened for Alzheimer’s disease amyloid-β peptide. J. Alzheimers Dis. 54, 821–830.CrossRefPubMedGoogle Scholar
  16. 16.
    Goldsbury C.S., Cooper G.J., Goldie K.N., et al. 1997. Polymorphic fibrillar assembly of human amylin. J. Struct. Biol. 119, 17–27.CrossRefPubMedGoogle Scholar
  17. 17.
    Meinhardt J., Sachse C., Hortschansky P., et al. 2009. Abeta(1–40) fibril polymorphism implies diverse interaction patterns in amyloid fibrils. J. Mol. Biol. 386, 869–877.CrossRefPubMedGoogle Scholar
  18. 18.
    Elkins M.R., Wang T., Nick M., et al. 2016. Structural polymorphism of Alzheimer′s β-amyloid fibrils as controlled by an E22 switch: A solid-state NMR study. J. Am. Chem. Soc. 138, 9840–9852.Google Scholar
  19. 19.
    Fandrich M., Meinhardt J., Grigorieff N. 2009. Structural polymorphism of Alzheimer Abeta and other amyloid fibrils. Prion. 3, 89–93.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Smith D.P., Jones S., Serpell L.C., et al. 2003. A systematic investigation into the effect of protein destabilization on beta 2-microglobulin amyloid formation. J. Mol. Biol. 330, 943–954.Google Scholar
  21. 21.
    Debelouchina G.T., Platt G.W., Bayro M.J., et al. 2010. Magic angle spinning NMR analysis of beta2- microglobulin amyloid fibrils in two distinct morphologies. J. Am. Chem. Soc. 132, 10414–10423.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sneideris T., Darguzis D., Botyriute A., et al. 2015. pHdriven polymorphism of insulin amyloid-like fibrils. PLOS ONE. 10, e0136602.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hu K.N., McGlinchey R.P., Wickner R.B., et al. 2011. Segmental polymorphism in functional amyloid. Biophys J. 101, 2242–2250.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gath J., Bousset L., Habenstein B., Melki R., et al. 2014. Unlike twins: An NMR comparison of two α-synuclein polymorphs featuring different toxicity. PLOS ONE. 9, e90659.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Heise H., Hoyer W., Becker S., et al. 2005. Molecularlevel secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. Proc. Natl. Acad. Sci. U. S. A. 102, 15871–15876.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Klement K., Wieligmann K., Meinhardt J., et al. 2007. Effect of different salt ions on the propensity of aggregation and on the structure of Alzheimer’s abeta(1–40) amyloid fibrils. J. Mol. Biol. 373, 1321–1333.CrossRefPubMedGoogle Scholar
  27. 27.
    Chatani E., Yagi H., Naiki H., Goto Y. 2012. Polymorphism of β-microglobulin amyloid fibrils manifested by ultrasonication-enhanced fibril formation in trifluoroethanol. J. Biol. Chem. 287, 22827–22837.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bitan G., Kirkitadze M.D., Lomakin A., et al. 2003. Amyloid beta-protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proc. Natl. Acad. Sci. U. S. A. 100, 330–335.Google Scholar
  29. 29.
    Xiao Y., Ma B., McElheny D., et al. 2015. Aβ(1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat. Struct. Mol. Biol. 22, 499–505.Google Scholar
  30. 30.
    Bertini I., Gonnelli L., Luchinat C., et al. 2011. A new structural model of Aβ40 fibrils. J. Am. Chem. Soc. 133, 16013–16022.CrossRefPubMedGoogle Scholar
  31. 31.
    Lu J.X., Qiang W., Yau W.M., et al. 2013. Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue. Cell. 154, 1257–1268.CrossRefPubMedGoogle Scholar
  32. 32.
    Van Raaij M.E., Segers-Nolten I.M., Subramaniam V. 2006. Quantitative morphological analysis reveals ultra structural diversity of amyloid fibrils from alpha-synuclein mutants. Biophys. J. 91, L96–L9CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Heise H., Celej M.S., Becker S., et al. 2008. Solid-state NMR reveals structural differences between fibrils of wild-type and disease-related A53T mutant alphasynuclein. J. Mol. Biol. 380, 444–450.CrossRefPubMedGoogle Scholar
  34. 34.
    Eliezer D., Yao J., Dyson H.J., Wright P.E. 1998. Structural and dynamic characterization of partially folded states of apomyoglobin and implication for protein folding. Nat. Struct. Biol. 5, 148–155.CrossRefPubMedGoogle Scholar
  35. 35.
    Hughson F.M., Wright P.E., Baldwin R.L. 1990. Structural characterization of a partly folded apomyoglobin intermediate. Science. 249, 1544–1548.CrossRefPubMedGoogle Scholar
  36. 36.
    Ptitsyn O. B. 1995. Molten globule and protein folding. Adv. Protein Chem. 47, 83–229.CrossRefPubMedGoogle Scholar
  37. 37.
    Fandrich M., Fletcher M.A., Dobson C.M. 2001. Amyloid fibrils from muscle myoglobin. Nature. 410, 165–166.CrossRefPubMedGoogle Scholar
  38. 38.
    Katina N.S., Ilyina N.B., Kashparov I.A., Balobanov V.A., Vasiliev V.D., Bychkova V.E. 2011. Apomyoglobin mutants with single point mutations at Val10 can form amyloid structures at permissive temperature. Biochemistry. 76, 555–563.PubMedGoogle Scholar
  39. 39.
    Iannuzzi C., Maritato R., Irace G., Sirangelo I. 2013. Misfolding and amyloid aggregation of apomyoglobin. Int. J. Mol. Sci. 14, 14287–14300.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Glover D. DNA Cloning: A Practical Approach. Oxford: IRL Press, 1985.Google Scholar
  41. 41.
    Gill S.C., von Hippel P.H. 1998. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319–326.CrossRefGoogle Scholar
  42. 42.
    Monti M., Amoresano A., Giorgetti S., et al. 2005. Limited proteolysis in the investigation of beta2-microglobulin amyloidogenic and fibrillar states. Biochim. Biophys. Acta. 1753, 44–50.CrossRefPubMedGoogle Scholar
  43. 43.
    Davis P.J., Holmes D., Waltho J.P., et al. 2015. Limited proteolysis reveals that amyloids from the 3D domainswapping cystatin B have a non-native β-sheet topology. J. Mol. Biol. 427, 2418–2434.CrossRefPubMedGoogle Scholar
  44. 44.
    Myers S.L., Thomson N.H., Radford S.E., et al. 2006. Investigating the structural properties of amyloid-like fibrils formed in vitro from beta2-microglobulin using limited proteolysis and ionization mass spectrometry. Rapid Commun. Mass Spectrom. 20, 1628–1636.CrossRefPubMedGoogle Scholar
  45. 45.
    Garbuzynskiy S.O., Lobanov M.Y., Galzitskaya O.V. 2010. FoldAmyloid: A method of prediction of amyloidogenic regions from protein sequence. Bioinformatics. 21, 326–332.CrossRefGoogle Scholar
  46. 46.
    Emily M., Talvas A., Dalamarche C. 2013. MetAmyl: a METa-predictor for AMYLoid proteins. PLoS One. 8, e79722.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Fernandez-Escamilla A.M., Rousseau F., Schymkowitz J., et al. 2004. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat. Biotechnol. 22, 1302–1306.CrossRefPubMedGoogle Scholar
  48. 48.
    Vilasi S., Dosi R., Iannuzzi C., et al. 2006. Kinetics of amyloid aggregation of mammal apomyoglobins and correlation with their amino acids sequences. FEBS Lett. 580, 1681–1684.CrossRefPubMedGoogle Scholar
  49. 49.
    Sirangelo I., Malmo C., Casillo M., et al. 2002. Tryptophanyl substitutions in apomyoglobin determine protein aggregation and amyloid-like fibril formation at physiological pH. J. Biol. Chem. 277, 45887–45891.CrossRefPubMedGoogle Scholar
  50. 50.
    Ptitsyn O.B., Ting K.L. 1999. Non-functional conserved residues in globins and their possible role as a folding nucleus. J. Mol. Biol. 291, 671–682.CrossRefPubMedGoogle Scholar
  51. 51.
    Kim W., Hecht M.H. 2008. Mutations enhance the aggregation propensity of the Alzheimer’s A beta peptide. J. Mol. Biol. 377, 565–574.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Chiti F., Stefani M., Taddei N., et al. 2003. Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature. 424, 805–808.CrossRefPubMedGoogle Scholar
  53. 53.
    Katina N.S., Suvorina M.Yu, Grigorashvili E.I., Marchenkov V.V., Ryabova N.A., Nikulin A.D., Surin A.K. 2016. Identification of regions in apomyoglobin which form intermolecular interactions in amyloid aggregates using high-performance mass spectrometry. Mass Spectrom. 13, 225–234.Google Scholar
  54. 54.
    Zandomeneghi G., Krebs M.R., McCammon M.G., et al. 2004. FTIR reveals structural differences between native beta-sheet proteins and amyloid fibrils. Protein Sci. 13, 3314–3321.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kong J., Yu S. 2007. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochem. Biophys. Sinica. 39, 549–559.CrossRefGoogle Scholar
  56. 56.
    Ladiwala A.R., Dordick J.S., Tessier P.M. 2011. Aromatic small molecules remodel toxic soluble oligomers of amyloid beta through three independent pathways. J. Biol. Chem. 286, 3209–3218.CrossRefPubMedGoogle Scholar
  57. 57.
    Iannuzzi C., Vilasi S., Portaccio M., Irace G., et al. 2007. Heme binding inhibits the fibrillization of amyloidogenic apomyoglobin and determines lack of aggregates cytotoxicity. Protein Sci. 16, 507–516.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Tartaglia G.G., Pawar A.P., Campioni S., et al. 2008. Prediction of aggregation-prone regions in structured proteins. J. Mol. Biol. 380, 425–436.CrossRefPubMedGoogle Scholar
  59. 59.
    Sirangelo I., Tavassi S., Martelli P.L., et al. 2000. The effect of tryptophanyl substitution on folding and structure of myoglobin. Eur. J. Biochem. 267, 3937–3945.CrossRefPubMedGoogle Scholar
  60. 60.
    Nishimura C., Dyson H.J., Wright P.E. 2006. Identification of native and non-native structure in kinetic folding intermediates of apomyoglobin. J. Mol. Biol. 355, 139–156.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • N. S. Katina
    • 1
  • E. I. Grigorashvili
    • 1
  • M. Yu. Suvorina
    • 1
  • N. B. Ilyina
    • 1
  • N. A. Ryabova
    • 1
  • O. M. Selivanova
    • 1
  • A. K. Surin
    • 1
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations