Molecular Biology

, Volume 52, Issue 1, pp 23–29 | Cite as

Incorporation of Copper Ions into T2/T3 Centers of Two-Domain Laccases

  • A. G. Gabdulkhakov
  • O. S. Kostareva
  • I. A. Kolyadenko
  • A. O. Mikhaylina
  • L. I. Trubitsina
  • S. V. Tishchenko
Structural Functional Analysis of Biopolymers and Their Complexes


Laccase belongs to the family of copper-containing oxidases. A study was made of the mechanism that sustains the incorporation of copper ions into the T2/T3 centers of recombinant two-domain laccase Streptomyces griseoflavus Ac-993. The occupancy of the T3 center by copper ions was found to increase with an increasing copper content in the culture medium and after dialysis of the protein preparation against a copper sulfate-containing buffer. The T2 center was filled only when overproducer strain cells were grown at a higher copper concentration in the medium. Two-domain laccases were assumed to possess a channel that serves to deliver copper ions to the T3 center during the formation of the three-dimensional laccase conformation and dialysis of the protein preparation. A narrower channel leads to the T2 center in two-domain laccases compared with three-domain ones, rendering the center less accessible for copper atoms. The incorporation of copper ions into the T2 center of two-domain laccases is likely to occur in the course of their biosynthesis or the formation of a functional trimer.


two-domain laccases T2/T3 copper centers channels X-ray structures Streptomyces griseoflavus 



two-domain (laccase)


three-domain (laccase)


S. griseoflavus small laccase


mutant SgSL


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Matuszewska A., Karp M., Jaszek M., et al. 2016. Laccase purified from Cerrena unicolor exerts antitumor activity against leukemic cells. Oncol. Lett. 11, 2009–2018.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Jones S.M., Solomon E.I. 2015. Electron transfer and reaction mechanism of laccases. Cell Mol. Life Sci. 72, 869–883.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bento I., Martins L.O., Gato Lopes G., et al. 2005. Dioxygen reduction by multi-copper oxidases: A structural perspective. Dalt. Trans. 4, 3507.CrossRefGoogle Scholar
  4. 4.
    Skálová T., Dušková J., Hašek J., et al. 2011. Structure of laccase from Streptomyces coelicolor after soaking with potassium hexacyanoferrate and at an improved resolution of 2.3 Å. Acta Crystallogr. Sect. F: Struct. Biol. Cryst. Commun. 67, 27–32.CrossRefGoogle Scholar
  5. 5.
    Durão P., Chen Z., Fernandes A.T., et al. 2008. Copper incorporation into recombinant CotA laccase from Bacillus subtilis: Characterization of fully copper loaded enzymes. J. Biol. Inorg. Chem. 13, 183–193.CrossRefPubMedGoogle Scholar
  6. 6.
    Gunne M., Höppner A., Hagedoorn P.L., et al. 2014. Structural and redox properties of the small laccase Ssl1 from Streptomyces sviceus. FEBS J. 281, 4307–4318.CrossRefPubMedGoogle Scholar
  7. 7.
    Osipov E.M., Polyakov K.M., Tikhonova T.V., et al. 2015. Incorporation of copper ions into crystals of T2 copper-depleted laccase from Botrytis aclada. Acta Crystallogr. Sect. Struct. Biol. Commun. 71, 1465–1469.CrossRefGoogle Scholar
  8. 8.
    Glazunova O.A., Polyakov K.M., Fedorova T.V., et al. 2015. Elucidation of the crystal structure of Coriolopsis caperata laccase: Restoration of the structure and activity of the native enzyme from the T2-depleted form by copper ions. Acta Crystallogr. Sect. D: Biol. Crystallogr. 71, 854–861.CrossRefGoogle Scholar
  9. 9.
    Tishchenko S., Gabdulkhakov A., Trubitsina L., et al. 2015. Crystallization and X-ray diffraction studies of a two-domain laccase from Streptomyces griseoflavus. Acta Crystallogr. Sect. Struct. Biol. Commun. 71, 1200–1204.CrossRefGoogle Scholar
  10. 10.
    Kostareva O.S., Gabdulkhakov A.G., Melnik B.S., et al. 2016. An increased copper ion content in Streptomyces griseoflavus laccase improves the thermostability of the protein. Aktual′n. Vopr. Biol. Fiz. Khim. 1, 236–239.Google Scholar
  11. 11.
    Kabsch W. 2010. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. Sect. D: Biol. Crystallogr. 66, 133–144.CrossRefGoogle Scholar
  12. 12.
    McCoy A.J., Grosse-Kunstleve R.W., Adams P.D., et al. 2007. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Murshudov G., Skubák P., Lebedev A., et al. 2011. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. Sect. D: Biol. Crystallogr. 67, 355–367.CrossRefGoogle Scholar
  14. 14.
    Adams P.D., Afonine P.V., Bunkóczi G., et al. 2010. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D: Biol. Crystallogr. 66, 213–221.CrossRefGoogle Scholar
  15. 15.
    Emsley P., Lohkamp B., Scott W.G., et al. 2010. Features and development of Coot. Acta Crystallogr. Sect. D: Biol. Crystallogr. 66, 486–501.CrossRefGoogle Scholar
  16. 16.
    Pavelka A., Sebestova E., Kozlikova B., et al. 2016. CAVER: Algorithms for analyzing dynamics of tunnels in macromolecules. IEEE/ACM Trans. Comput. Biol. Bioinform. 13, 505–517.CrossRefPubMedGoogle Scholar
  17. 17.
    Vaguine A.A., Richelle J., Wodak S.J. 1999. SFCHECK: A unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr. Sect. D: Biol. Crystallogr. 55, 191–205.CrossRefGoogle Scholar
  18. 18.
    Koroleva O.V., Stepanova E.V., Gavrilova V.P., et al. 2001. Comparative characterization of methods for removal of Cu(II) from the active sites of fungal laccases. Biochemistry (Moscow). 66, 960–966.CrossRefGoogle Scholar
  19. 19.
    Wynn R.M., Knaff D.B., Holwerda R.A. 1984. Reactivity, electrochemical, and spectroscopic studies of type 2 copper-depleted Rhus vernicifera laccase. Biochemistry. 23, 241–247.CrossRefGoogle Scholar
  20. 20.
    Hanna P.M., McMillin D.R., Pasenkiewicz-Gierula M., et al. 1988. Type 2-depleted fungal laccase. Biochem. J. 253, 561–568.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Morpurgo L., Graziani M.T., Desideri A., Rotilio G. 1980. Titrations with ferrocyanide of Japanese-lacquertree (Rhus vernicifera) laccase and of type 2 copper - depleted enzyme. Biochem. J. 187, 367–370.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gupta A., Nederlof I., Sottini S., Tepper A.W.J.W., et al. 2012. Involvement of Tyr108 in the enzyme mechanism of the small laccase from Streptomyces coelicolor. J. Am. Chem. Soc. 134, 18213–18216.CrossRefPubMedGoogle Scholar
  23. 23.
    Skálová T., Dohnálek J., Østergaard L.H., et al. 2009. The structure of the small laccase from Streptomyces coelicolor reveals a link between laccases and nitrite reductases. J. Mol. Biol. 385, 1165–1178.CrossRefPubMedGoogle Scholar
  24. 24.
    Komori H., Kataoka K., Tanaka S., et al. 2016. Exogenous acetate ion reaches the type II copper centre in CueO through the water-excretion channel and potentially affects the enzymatic activity. Acta Crystallogr. Sect. Struct. Biol. Commun. 72, 558–563.CrossRefGoogle Scholar
  25. 25.
    Polyakov K.M., Gavryushov S., Ivanova S., et al. 2017. Structural study of the X-ray-induced enzymatic reduction of molecular oxygen to water by Steccherinum murashkinskyi laccase: Insights into the reaction mechanism. Acta Crystallogr. Sect. D: Struct. Biol. 73, 388–401.CrossRefGoogle Scholar
  26. 26.
    Trubitsina L.I., Tishchenko S.V., Gabdulkhakov A.G., et al. 2015. Structural and functional characterization of two-domain laccase from Streptomyces viridochromogenes. Biochimie. 112, 151–159.CrossRefPubMedGoogle Scholar
  27. 27.
    O′Halloran T.V., Culotta V.C. 2000. Metallochaperones, an intracellular shuttle service for metal ions. J. Biol. Chem. 275, 25057–25060.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. G. Gabdulkhakov
    • 1
  • O. S. Kostareva
    • 1
  • I. A. Kolyadenko
    • 1
  • A. O. Mikhaylina
    • 1
  • L. I. Trubitsina
    • 2
  • S. V. Tishchenko
    • 1
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow oblastRussia
  2. 2.Skryabin Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations