Advertisement

Molecular Biology

, Volume 52, Issue 1, pp 30–35 | Cite as

Lysozyme Stabilization under High Pressure: Differential Scanning Microcalorimetry

  • A. Y. Yegorov
  • S. A. Potekhin
Structural Functional Analysis of Biopolymers and Their Complexes
  • 18 Downloads

Abstract

The heat denaturation of lysozyme has been studied by high-pressure differential scanning microcalorimetry. It has been demonstrated that an increase in pressure has different influence on denaturation temperature and enthalpy at different pH values. It has been established that the pressure increase has no appreciable effect on the transition cooperativity. The experimental data have been analyzed using an equilibrium model of transition between two states. Partial molar volume changes accompanying the denaturation as well as isothermal compressibility and thermal expansibility coefficients have been assessed. In contrast to the denaturation of most globular proteins, the lysozyme denaturation under conditions of the experiment was accompanied by positive volume changes. Possible reasons for this unusual behavior have been discussed.

Keywords

lysozyme differential scanning microcalorimetry high pressure denaturation volume change 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Finkelstein A.V. 2014. Fizika belkovykh molekul (Physics of Protein Molecules). Moscow-Izhevsk: Inst. Komp′yut. Issled.Google Scholar
  2. 2.
    Bridgman P.W. 1914. The coagulation of albumen by pressure. J. Biol. Chem. 19, 511–512.Google Scholar
  3. 3.
    Mozhaev V.V., Heremans K., Frank J., et al. 1996. High pressure effects on protein structure and function. Proteins. 24, 81–91.CrossRefPubMedGoogle Scholar
  4. 4.
    Meersman F., Daniel I., Bartlett D.H., et al. 2013. High-pressure biochemistry and biophysics. Rev. Mineral. Geochem. 75, 607–648.CrossRefGoogle Scholar
  5. 5.
    Privalov P.L., Makhatadze G.I. 1992. Contribution of hydration and non-covalent interactions to the heat capacity effect on protein unfolding. J. Mol. Biol. 224, 715–723.CrossRefPubMedGoogle Scholar
  6. 6.
    Kauzmann W. 1987. Thermodynamics of unfolding. Nature. 325, 763–764.CrossRefGoogle Scholar
  7. 7.
    Chalikian T.V., Breslauer K.J. 1996. On volume changes accompanying conformational transitions of biopolymers. Biopolymers. 39, 619–626.CrossRefPubMedGoogle Scholar
  8. 8.
    Potekhin S.A. 2012. The potential of scanning microcalorimetry for studying thermotropic conformational transitions in biomacromolecules. Polym. Sci. Ser. C. 54, 108–115.CrossRefGoogle Scholar
  9. 9.
    Potekhin S.A., Senin A.A., Abdurakhmanov N.N., et al. 2008. High pressure effect on the main transition from the ripple gel P’beta phase to the liquid crystal (Lalpha) phase in dipalmitoylphosphatidylcholine: Microcalorimetric study. Biochim. Biophys. Acta. 1778, 2588–2593.CrossRefPubMedGoogle Scholar
  10. 10.
    Potekhin S.A., Senin A.A., Abdurakhmanov N.N., et al. 2011. Thermodynamic invariants of gel to the liquid- crystal 1,2-diacylphosphatidylcholines transition. Biochim. Biophys. Acta. 1808, 1806–1810.CrossRefPubMedGoogle Scholar
  11. 11.
    Potekhin S.A., Senin A.A., Khusainova R.S. 2013. Thermodynamics of the gel to liquid crystal 1,2-diacylphosphatidylcholines transition. High-pressure microcalorimetry}. Thermochim. Acta. 560, 17–26.CrossRefGoogle Scholar
  12. 12.
    Potekhin S.A., Senin A.A., Abdurakhmanov N.N., et al. 2009. High pressure stabilization of collagen structure. Biochim. Biophys. Acta. 1794, 1151–1158.CrossRefPubMedGoogle Scholar
  13. 13.
    Yegorov A.Y., Potekhin S.A. 2015. Moderate pressure has no distinct impact on hydrophobic hydration of proteins. Thermochim. Acta. 610, 10–15.CrossRefGoogle Scholar
  14. 14.
    Potekhin S.A., Yegorov A.Y., Khusainova R.S. 2015. A thermodynamic analysis of two-state transitions under high pressure: Theoretical considerations. Biophysics (Moscow) 60, 687–691.CrossRefGoogle Scholar
  15. 15.
    Privalov P.L., Khechinashvili N.N. 1974. A thermodynamic approach to the problem of stabilization of globular protein structure: A calorimetric study. J. Mol. Biol. 86, 665–684.CrossRefPubMedGoogle Scholar
  16. 16.
    Senin A.A., Dzhavadov L.N., Potekhin S.A. 2016. High-pressure differential scanning microcalorimeter. Rev. Scientific Instruments. 87, 034901.CrossRefGoogle Scholar
  17. 17.
    Senin A.A., Potekhin S.A., Tiktopulo E.I., et al. 2000. Differential scanning microcalorimeter SCAL-1. J. Thermal Anal. Calorimetry. 62, 153–160.CrossRefGoogle Scholar
  18. 18.
    Privalov P.L., Potekhin S.A. 1986. Scanning microcalorimetry in studying temperature-induced changes in proteins. Methods Enzymol. 131, 4–51.CrossRefPubMedGoogle Scholar
  19. 19.
    Tsiklis D.S., 1976. Tekhnika fiziko-khimicheskikh issledovanii pri vysokikh i sverkhvysokikh davleniyakh (Techniques of Physicochemical Research at High and Ultrahigh Pressures). Moscow: Khimiya.Google Scholar
  20. 20.
    Bull H.B., Breese K. 1973. Temperature dependence of partial volumes of proteins. Biopolymers. 12, 2351–2358.CrossRefPubMedGoogle Scholar
  21. 21.
    Rösgen J., Hinz H.-J. 2000. Response functions of proteins. Biophys. Chem. 83, 61–71.CrossRefPubMedGoogle Scholar
  22. 22.
    Lin L.-N., Brandts J.F., Brandts J.M., et al. 2002. Determination of the volumetric properties of proteins and other solutes using pressure perturbation calorimetry. Anal. Biochem. 302, 144–160.CrossRefPubMedGoogle Scholar
  23. 23.
    Li T.M., Hook J.W., Drickamer H.G., et al. 1976. Plurality of pressure-denatured forms in chymotrypsinogen and lysozyme. Biochemistry. 15, 5571–5580.CrossRefPubMedGoogle Scholar
  24. 24.
    Obuchi K., Yamanobe T. 2002. Differential scanning calorimetry of proteins under high pressure. In: Trends in High Pressure Bioscience and Biotechnology. Progress in Biotechnology, vol. 19. Ed. Hayashi R. Amsterdam: Elsevier, pp. 599–606.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchino, Moscow oblastRussia
  2. 2.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations