Molecular Biology

, Volume 51, Issue 6, pp 819–829 | Cite as

Requirements for the Induction of Broadly Neutralizing Antibodies against HIV-1 by Vaccination

Current Trends in the Application of Monoclonal Antibodies Special Issue


A study of the induction of broadly neutralizing antibodies (bNAbs) in HIV-infected patients and vaccinated subjects revealed the main criteria for the formation of bNAbs (the duration of exposure to a viral antigen, the effect of the diversity of HIV variants, and the removal of barriers associated with the Env-dependent defense mechanisms of HIV-1). Modified trimers of the HIV-1 envelope protein (Env) exposed on virus-like particles (VLP) have unique properties: they (i) modulate the exposure of binding sites (bs) of the CD4 receptor and co-receptor; (ii) create steric restrictions for contact with bNAbs; (iii) increase the Env presentation density, thus enhancing the immune response; (iv) form stable trimers that do not induce off-target immune responses; and (v) allow additional modifications to their structure and construction of a platform with immunostimulating molecules. Immunization using a heterologous subtype-cross prime–boost regime with modified trimeric Env is capable of inducing somatic hypermutation levels necessary for the formation of bNAbs.


HIV-1 broadly neutralizing antibodies protective neutralizing antibodies Env trimer virus-like particles 



human immunodeficiency virus


primary (initial)–repetitive (immunization)


broadly neutralizing antibodies


binding site


envelope protein


neutralizing antibodies


non-neutralizing antibodies


outer domain of gp120


protective non-neutralizing antibodies


virus-like particle.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sather D.N., Armann J., Ching L.K., et al. 2009. Factors associated with the development of cross-reactive neutralizing antibodies during human immunodeficiency virus type 1 infection. J. Virol. 83, 757–769.PubMedCrossRefGoogle Scholar
  2. 2.
    Gray E.S., Madiga M.C., Hermanus T., et al. 2011. The neutralization breadth of HIV-1 develops incrementally over four years and is associated with CD4+ T cell decline and high viral load during acute infection. J. Virol. 85, 4828–4840.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    McMichael A., Hanke T. 2002. The quest for an AIDS vaccine: Is the CD8+ T-cell approach feasible? Nat. Rev. Immunol. 2, 283–291.PubMedCrossRefGoogle Scholar
  4. 4.
    Swiggard W.J., Baytop C., Yu J.J., et al. 2005. Human immunodeficiency virus type 1 can establish latent infection in resting CD4+ T cells in the absence of activating stimuli. J. Virol. 79, 14179–14188.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Seu L., Kutsch O. 2015. The host cell side of latent HIV-1 infection. Oncotarget. 6, 19920–19921.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Sanders R.W., Moore J.P. 2017. Native-like Env trimers as a platform for HIV-1 vaccine design. Immunol. Rev. 275, 161–182.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Mouquet H. 2014. Antibody B cell responses in HIV-1 infection. Trends Immunol. 35, 549–561.PubMedCrossRefGoogle Scholar
  8. 8.
    Shibata R., Igarashi T., Haigwood N., et al. 1999. Neutralizing antibody directed against the HIV-1 envelope glycoprotein can completely block HIV-1/SIV chimeric virus infections of macaque monkeys. Nat. Med. 5, 204–210.PubMedCrossRefGoogle Scholar
  9. 9.
    Mascola J.R., Montefiori D.C. 2010. The role of antibodies in HIV vaccines. Annu. Rev. Immunol. 28, 413–444.PubMedCrossRefGoogle Scholar
  10. 10.
    Burke B., Barnett S.W. 2007. Broadening our view of protective antibody responses against HIV. Curr. HIV Res. 5, 625–641.PubMedCrossRefGoogle Scholar
  11. 11.
    Hessell A.J., Poignard P., Hunter M., et al. 2009. Effective, low-titer antibody protection against lowdose repeated mucosal SHIV challenge in macaques. Nat. Med. 15, 951–954.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Pope M., Haase A.T. 2003. Transmission, acute HIV-1 infection and the quest for strategies to prevent infection. Nat. Med. 9, 847–852.PubMedCrossRefGoogle Scholar
  13. 13.
    Joseph S.B., Swanstrom R., Kashuba A.D., et al. 2015. Bottlenecks in HIV-1 transmission: Insights from the study of founder viruses. Nat. Rev. Microbiol. 13, 414–425.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Burton D.R., Ahmed R., Barouch D.H., et al. 2012. A blueprint for HIV vaccine discovery. Cell Host Microbe. 12, 396–407.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Krammer F., Palese P. 2014. Universal influenza virus vaccines: Need for clinical trials. Nat. Immunol. 15, 3–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Burton D.R., Poignard P., Stanfield R.L., et al. 2012. Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. Science. 337, 183–186.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Burton D.R., Hessell A.J., Keele B.F., et al. 2011. Limited or no protection by weakly or nonneutralizing antibodies against vaginal SHIV challenge of macaques compared with a strongly neutralizing antibody. Proc. Natl. Acad. Sci. U. S. A. 108, 11181–11186.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Klein F., Mouquet H., Dosenovic P., et al. 2013. Antibodies in HIV-1 vaccine development and therapy. Science. 341, 1199–1204.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Mikell I., Stamatatos L. 2012. Evolution of cross-neutralizing antibody specificities to the CD4-BS and the carbohydrate cloak of the HIV Env in an HIV-1-infected subject. PLoS ONE. 7, e49610.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Tomaras G.D., Binley J.M., Gray E.S., et al. 2011. Polyclonal B cell responses to conserved neutralization epitopes in a subset of HIV-1-infected individuals. J. Virol. 85, 11502–11519.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Wibmer C.K., Bhiman J.N., Gray E.S., et al. 2013. Viral escape from HIV-1 neutralizing antibodies drives increased plasma neutralization breadth through sequential recognition of multiple epitopes and immunotypes. PLoS Pathog. 9, e1003738.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Bonsignori M., Montefiori D.C., Wu X., et al. 2012. Two distinct broadly neutralizing antibody specificities of different clonal lineages in a single HIV-1-infected donor: Implications for vaccine design. J. Virol. 86, 4688–4692.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Rusert P., Kouyos R.D., Kadelka C., et al. 2016. Determinants of HIV-1 broadly neutralizing antibody induction. Nat. Med. 22, 1260–1267.PubMedCrossRefGoogle Scholar
  24. 24.
    Wei X., Decker J.M., Wang S., et al. 2003. Antibody neutralization and escape by HIV-1. Nature 422, 307–312.PubMedCrossRefGoogle Scholar
  25. 25.
    Richman D.D., Wrin T., Little S.J., et al. 2003. Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc. Natl. Acad. Sci. U. S. A. 100, 4144–4149.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Gray E.S., Moore P.L., Choge I.A., et al. 2007. Neutralizing antibody responses in acute human immunodeficiency virus type 1 subtype C infection. J. Virol. 81, 6187–6196.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Mikell I., Sather D.N., Kalams S.A., et al. 2011. Characteristics of the earliest cross-neutralizing antibody response to HIV-1. PLoS Pathog. 7, e1001251.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Doria-Rose N.A., Klein R.M., Manion M.M., et al. 2009. Frequency and phenotype of human immunodeficiency virus envelope-specific B cells from patients with broadly cross-neutralizing antibodies. J. Virol. 83, 188–199.PubMedCrossRefGoogle Scholar
  29. 29.
    van Gils M.J., Euler Z., Schweighardt B., et al. 2009. Prevalence of cross-reactive HIV-1-neutralizing activity in HIV-1-infected patients with rapid or slow disease progression. AIDS. 23, 2405–2414.PubMedCrossRefGoogle Scholar
  30. 30.
    Walker L.M., Phogat S.K., Chan-Hui P.Y., et al. 2009. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science. 326, 285–289.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Walker L.M., Huber M., Doores K.J., et al. 2011. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature. 477, 466–470.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Wu X., Yang Z.Y., Li Y., et al. 2010. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science. 329, 856–861.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Scheid J.F., Mouquet H., Ueberheide B., et al. 2011. Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science. 333, 1633–1637.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Haynes B.F., Kelsoe G., Harrison S.C., et al. 2012. B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study. Nat. Biotechnol. 30, 423–433.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Kwong P.D., Mascola J.R. 2012. Human antibodies that neutralize HIV-1: Identification, structures, and B cell ontogenies. Immunity. 37, 412–425.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Kwong P.D., Mascola J.R., Nabel G.J. 2013. Broadly neutralizing antibodies and the search for an HIV-1 vaccine: The end of the beginning. Nat. Rev. Immunol. 13, 693–701.PubMedCrossRefGoogle Scholar
  37. 37.
    Mascola J.R., Haynes B.F. 2013. HIV-1 neutralizing antibodies: Understanding nature’s pathways. Immunol. Rev. 254, 225–244.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Gruell H., Klein F. 2014. Opening fronts in HIV vaccine development: Tracking the development of broadly neutralizing antibodies. Nat. Med. 20, 478–479.PubMedCrossRefGoogle Scholar
  39. 39.
    Klein K., Veazey R.S., Warrier R., et al. 2013. Neutralizing IgG at the portal of infection mediates protection against vaginal simian/human immunodeficiency virus challenge. J. Virol. 87, 11604–11616.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Veselinovic M., Neff C.P., Mulder L.R., et al. 2012. Topical gel formulation of broadly neutralizing anti-HIV-1 monoclonal antibody VRC01 confers protection against HIV-1 vaginal challenge in a humanized mouse model. Virology. 432, 505–510.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Barouch D.H., Whitney J.B., Moldt B., et al. 2013. Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys. Nature. 503, 224–228.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    McCoy L.E., Weiss R.A. 2013. Neutralizing antibodies to HIV-1 induced by immunization. J. Exp. Med. 210, 209–223.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Shingai M., Nishimura Y., Klein F., et al. 2013. Antibody-mediated immunotherapy of macaques chronically infected with SHIV suppresses viraemia. Nature. 503, 277–280.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    West A.P., Jr., Scharf L., Scheid J.F., et al. 2014. Structural insights on the role of antibodies in HIV-1 vaccine and therapy. Cell. 156, 633–648.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    van Gils M.J., Sanders R.W. 2013. Broadly neutralizing antibodies against HIV-1: Templates for a vaccine. Virology. 435, 46–56.PubMedCrossRefGoogle Scholar
  46. 46.
    Wu X., Zhou T., Zhu J., et al. 2011. Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science. 333, 1593–1602.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Zhou T., Zhu J., Wu X., et al. 2013. Multidonor analysis reveals structural elements, genetic determinants, and maturation pathway for HIV-1 neutralization by VRC01-class antibodies. Immunity. 39, 245–258.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Moog C., Fleury H.J., Pellegrin I., et al. 1997. Autologous and heterologous neutralizing antibody responses following initial seroconversion in human immunodeficiency virus type 1-infected individuals. J. Virol. 71, 3734–3741.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Burrer R., Salmon-Ceron D., Richert S., et al. 2001. Immunoglobulin G (IgG) and IgA, but also nonantibody factors, account for in vitro neutralization of human immunodeficiency virus (HIV) type 1 primary isolates by serum and plasma of HIV-infected patients. J. Virol. 75, 5421–5424.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Binley J.M., Lybarger E.A., Crooks E.T., et al. 2008. Profiling the specificity of neutralizing antibodies in a large panel of plasmas from patients chronically infected with human immunodeficiency virus type 1 subtypes B and C. J. Virol. 82, 11651–11668.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Simek M.D., Rida W., Priddy F.H., et al. 2009. Human immunodeficiency virus type 1 elite neutralizers: Individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm. J. Virol. 83, 7337–7348.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Haynes B.F., Fleming J., St Clair E.W., et al. 2005. Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies. Science. 308, 1906–1908.PubMedCrossRefGoogle Scholar
  53. 53.
    Alam S.M., McAdams M., Boren D., et al. 2007. The role of antibody polyspecificity and lipid reactivity in binding of broadly neutralizing anti-HIV-1 envelope human monoclonal antibodies 2F5 and 4E10 to glycoprotein 41 membrane proximal envelope epitopes. J. Immunol. 178, 4424–4435.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Matyas G.R., Wieczorek L., Beck Z., et al. 2009. Neutralizing antibodies induced by liposomal HIV-1 glycoprotein 41 peptide simultaneously bind to both the 2F5 or 4E10 epitope and lipid epitopes. AIDS. 23, 2069–2077.PubMedCrossRefGoogle Scholar
  55. 55.
    Sun Z.Y., Oh K.J., Kim M., et al. 2008. HIV-1 broadly neutralizing antibody extracts its epitope from a kinked gp41 ectodomain region on the viral membrane. Immunity. 28, 52–63.PubMedCrossRefGoogle Scholar
  56. 56.
    Ofek G., McKee K., Yang Y., et al. 2010. Relationship between antibody 2F5 neutralization of HIV-1 and hydrophobicity of its heavy chain third complementarity-determining region. J. Virol. 84, 2955–2962.PubMedCrossRefGoogle Scholar
  57. 57.
    Huang J., Ofek G., Laub L., et al. 2012. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature. 491, 406–412.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Crotty S. 2014. T follicular helper cell differentiation, function, and roles in disease. Immunity. 41, 529–542.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Craft JE. 2012. Follicular helper T cells in immunity and systemic autoimmunity. Nat. Rev. Rheumatol. 8, 337–347.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Nurieva R.I., Chung Y., Martinez G.J., et al. 2009. Bcl6 mediates the development of T follicular helper cells. Science. 325, 1001–1005.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Crotty S. 2011. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29, 621–663.PubMedCrossRefGoogle Scholar
  62. 62.
    Avery D.T., Bryant V.L., Ma C.S., et al. 2008. IL-21-induced isotype switching to IgG and IgA by human naive B cells is differentially regulated by IL-4. J. Immunol. 181, 1767–1779.PubMedCrossRefGoogle Scholar
  63. 63.
    Bentebibel S.E., Schmitt N., Banchereau J., et al. 2011. Human tonsil B-cell lymphoma 6 (BCL6)-expressing CD4+ T-cell subset specialized for B-cell help outside germinal centers. Proc. Natl. Acad. Sci. U. S. A. 108, E488–497.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Vinuesa C.G., Linterman M.A., Goodnow C.C., et al. 2010. T cells and follicular dendritic cells in germinal center B-cell formation and selection. Immunol. Rev. 237, 72–89.PubMedCrossRefGoogle Scholar
  65. 65.
    Liu D., Xu H., Shih C., et al. 2015. T-B-cell entanglement and ICOSL-driven feed-forward regulation of germinal centre reaction. Nature. 517, 214–218.PubMedCrossRefGoogle Scholar
  66. 66.
    Goenka R., Barnett L.G., Silver J.S., et al. 2011. Cutting edge: Dendritic cell-restricted antigen presentation initiates the follicular helper T cell program but cannot complete ultimate effector differentiation. J. Immunol. 187, 1091–1095.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Yao C., Zurawski S.M., Jarrett E.S., et al. 2015. Skin dendritic cells induce follicular helper T cells and protective humoral immune responses. J. Allergy Clin. Immunol. 136, 1387–1397 e7.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Martin-Gayo E., Cronin J., Hickman T., et al. 2017. Circulating CXCR5+CXCR3+PD-1lo Tfh-like cells in HIV-1 controllers with neutralizing antibody breadth. JCI Insight. 2, e89574.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Moore P.L., Williamson C., Morris L. 2015. Virological features associated with the development of broadly neutralizing antibodies to HIV-1. Trends Microbiol. 23, 204–211.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Landais E., Huang X., Havenar-Daughton C., et al. 2016. Broadly neutralizing antibody responses in a large longitudinal Sub-Saharan HIV primary infection cohort. PLoS Pathog. 12, e1005369.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Klein F., Diskin R., Scheid J.F., et al. 2013. Somatic mutations of the immunoglobulin framework are generally required for broad and potent HIV-1 neutralization. Cell. 153, 126–138.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Goo L., Chohan V., Nduati R., et al. 2014. Early development of broadly neutralizing antibodies in HIV-1-infected infants. Nat. Med. 20, 655–658.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Liao H.X., Lynch R., Zhou T., et al. 2013. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature. 496, 469–476.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Doria-Rose N.A., Schramm C.A., Gorman J., et al. 2014. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature. 509, 55–62.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Pejchal R., Walker L.M., Stanfield R.L., et al. 2010. Structure and function of broadly reactive antibody PG16 reveal an H3 subdomain that mediates potent neutralization of HIV-1. Proc. Natl. Acad. Sci. U. S. A. 107, 11483–11488.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    McLellan J.S., Pancera M., Carrico C., et al. 2011. Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature. 480, 336–343.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Pancera M., Shahzad-Ul-Hussan S., Doria-Rose N.A., et al. 2013. Structural basis for diverse N-glycan recognition by HIV-1-neutralizing V1-V2-directed antibody PG16. Nat. Struct. Mol. Biol. 20, 804–813.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Julien J.P., Lee J.H., Cupo A., et al. 2013. Asymmetric recognition of the HIV-1 trimer by broadly neutralizing antibody PG9. Proc. Natl. Acad. Sci. U. S. A. 110, 4351–4356.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Kwong P.D., Wyatt R., Robinson J., et al. 1998. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature. 393, 648–659.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Vzorov A.N., Compans R.W. 2016. Cytoplasmic domain effects on exposure of co-receptor-binding sites of HIV-1 Env. Arch. Virol. 161, 3011–3018.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Vzorov A.N., Yang C., Compans R.W. 2015. An amphipathic sequence in the cytoplasmic tail of HIV-1 Env alters cell tropism and modulates viral receptor specificity. Acta Virol. 59, 209–220.PubMedCrossRefGoogle Scholar
  82. 82.
    Vzorov A.N., Wang L., Chen J., et al. 2016. Effects of modification of the HIV-1 Env cytoplasmic tail on immunogenicity of VLP vaccines. Virology. 489, 141–150.PubMedCrossRefGoogle Scholar
  83. 83.
    Vzorov A.N., Compans R.W. 2016. VLP vaccines and effects of HIV-1 Env protein modifications on their antigenic properties. Mol. Biol. (Moscow). 50, 353–361.CrossRefGoogle Scholar
  84. 84.
    Moore P.L., Crooks E.T., Porter L., et al. 2006. Nature of nonfunctional envelope proteins on the surface of human immunodeficiency virus type 1. J. Virol. 80, 2515–2528.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Parren P.W., Burton D.R., Sattentau Q.J. 1997. HIV-1 antibody: Debris or virion? Nat. Med. 3, 366–367.PubMedCrossRefGoogle Scholar
  86. 86.
    Munro J.B., Gorman J., Ma X., et al. 2014. Conformational dynamics of single HIV-1 envelope trimers on the surface of native virions. Science. 346, 759–763.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Guttman M., Cupo A., Julien J.P., et al. 2015. Antibody potency relates to the ability to recognize the closed, pre-fusion form of HIV Env. Nat. Commun. 6, 6144.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Pugach P., Ozorowski G., Cupo A., et al. 2015. A native-like SOSIP.664 trimer based on an HIV-1 subtype B env gene. J. Virol. 89, 3380–3395.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Harris A.K., Bartesaghi A., Milne J.L., et al. 2013. HIV-1 envelope glycoprotein trimers display open quaternary conformation when bound to the gp41 membrane-proximal external-region-directed broadly neutralizing antibody Z13e1. J. Virol. 87, 7191–7196.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Sliepen K., Sanders R.W. 2016. HIV-1 envelope glycoprotein immunogens to induce broadly neutralizing antibodies. Expert. Rev. Vaccines. 15, 349–365.PubMedGoogle Scholar
  91. 91.
    Jardine J.G., Ota T., Sok D., et al. 2015. HIV-1 vaccines: Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen. Science. 349, 156–161.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Binley J.M., Sanders R.W., Clas B., et al. 2000. A recombinant human immunodeficiency virus type 1 envelope glycoprotein complex stabilized by an intermolecular disulfide bond between the gp120 and gp41 subunits is an antigenic mimic of the trimeric virionassociated structure. J. Virol. 74, 627–643.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Sanders R.W., Vesanen M., Schuelke N., et al. 2002. Stabilization of the soluble, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1. J. Virol. 76, 8875–8889.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Khayat R., Lee J.H., Julien J.P., et al. 2013. Structural characterization of cleaved, soluble HIV-1 envelope glycoprotein trimers. J. Virol. 87, 9865–9872.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Klasse P.J., Depetris R.S., Pejchal R., et al. 2013. Influences on trimerization and aggregation of soluble, cleaved HIV-1 SOSIP envelope glycoprotein. J. Virol. 87, 9873–9885.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Crooks E.T., Tong T., Osawa K., et al. 2011. Enzyme digests eliminate nonfunctional Env from HIV-1 particle surfaces, leaving native Env trimers intact and viral infectivity unaffected. J. Virol. 85, 5825–5839.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Vzorov A.N., Gernert K.M., Compans R.W. 2005. Multiple domains of the SIV Env protein determine virus replication efficiency and neutralization sensitivity. Virology. 332, 89–101.PubMedCrossRefGoogle Scholar
  98. 98.
    Vzorov A.N., Compans R.W. 2011. Effects of stabilization of the gp41 cytoplasmic domain on fusion activity and infectivity of SIVmac239. AIDS Res. Hum. Retroviruses. 27, 1213–1222.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Waning D.L., Russell C.J., Jardetzky T.S., et al. 2004. Activation of a paramyxovirus fusion protein is modulated by inside-out signaling from the cytoplasmic tail. Proc. Natl. Acad. Sci. U. S. A. 101, 9217–9222.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Derdeyn C.A., Decker J.M., Bibollet-Ruche F., et al. 2004. Envelope-constrained neutralization-sensitive HIV-1 after heterosexual transmission. Science. 303, 2019–2022.PubMedCrossRefGoogle Scholar
  101. 101.
    Skountzou I., Quan F.S., Gangadhara S., et al. 2007. Incorporation of glycosylphosphatidylinositol-anchored granulocyte-macrophage colony-stimulating factor or CD40 ligand enhances immunogenicity of chimeric simian immunodeficiency virus-like particles. J. Virol. 81, 1083–1094.PubMedCrossRefGoogle Scholar
  102. 102.
    Vassilieva E.V., Wang B.Z., Vzorov A.N., et al. 2011. Enhanced mucosal immune responses to HIV viruslike particles containing a membrane-anchored adjuvant. MBio. 2, e00328-10.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Kasturi S.P., Skountzou I., Albrecht R.A., et al. 2011. Programming the magnitude and persistence of antibody responses with innate immunity. Nature. 470, 543–547.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Kasturi S.P., Kozlowski P.A., Nakaya H.I., et al. 2017. Adjuvanting a simian immunodeficiency virus vaccine with Toll-like receptor ligands encapsulated in nanoparticles induces persistent antibody responses and enhanced protection in TRIM5-alpha restrictive macaques. J. Virol. 91 (4), e01844–16. doi 10.1128/JVI.01844-16PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Feng H., Zhang H., Deng J., et al. 2015. Incorporation of a GPI-anchored engineered cytokine as a molecular adjuvant enhances the immunogenicity of HIV VLPs. Sci. Rep. 5, 11856.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Bhiman J.N., Anthony C., Doria-Rose N.A., et al. 2015. Viral variants that initiate and drive maturation of V1V2-directed HIV-1 broadly neutralizing antibodies. Nat. Med. 21, 1332–1336.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Xiao X., Chen W., Feng Y., et al. 2009. Maturation pathways of cross-reactive HIV-1 neutralizing antibodies. Viruses. 1, 802–817.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Xiao X., Chen W., Feng Y., et al. 2009. Germline-like predecessors of broadly neutralizing antibodies lack measurable binding to HIV-1 envelope glycoproteins: Implications for evasion of immune responses and design of vaccine immunogens. Biochem. Biophys. Res. Commun. 390, 404–409.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    McGuire A.T., Hoot S., Dreyer A.M., et al. 2013. Engineering HIV envelope protein to activate germline B cell receptors of broadly neutralizing anti-CD4 binding site antibodies. J. Exp. Med. 210, 655–663.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Jardine J., Julien J.P., Menis S., et al. 2013. Rational HIV immunogen design to target specific germline B cell receptors. Science. 340, 711–716.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Sliepen K., Medina-Ramirez M., Yasmeen A., et al. 2015. Binding of inferred germline precursors of broadly neutralizing HIV-1 antibodies to native-like envelope trimers. Virology. 486, 116–120.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Dosenovic P., von Boehmer L., Escolano A., et al. 2015. Immunization for HIV-1 broadly neutralizing antibodies in human Ig knockin mice. Cell. 161, 1505–1515.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Scharf L., West A.P., Sievers S.A., et al. 2016. Structural basis for germline antibody recognition of HIV-1 immunogens. eLife. 5, e13783PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    McGuire A.T., Gray M.D., Dosenovic P., et al. 2016. Specifically modified Env immunogens activate Bcell precursors of broadly neutralizing HIV-1 antibodies in transgenic mice. Nat. Commun. 7, 10618.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Medina-Ramirez M., Sanders R.W., Klasse P.J. 2014. Targeting B-cell germlines and focusing affinity maturation: The next hurdles in HIV-1-vaccine development? Expert Rev. Vaccines. 13, 449–452.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Hoot S., McGuire A.T., Cohen K.W., et al. 2013. Recombinant HIV envelope proteins fail to engage germline versions of anti-CD4bs bNAbs. PLoS Pathog. 9, e1003106.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    McGuire A.T., Glenn J.A., Lippy A., et al. 2014. Diverse recombinant HIV-1 Envs fail to activate B cells expressing the germline B cell receptors of the broadly neutralizing anti-HIV-1 antibodies PG9 and 447-52D. J. Virol. 88, 2645–2657.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    de Taeye S.W., Moore J.P., Sanders R.W. 2016. HIV-1 Envelope trimer design and immunization strategies to induce broadly neutralizing antibodies. Trends Immunol. 37, 221–232.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Andrabi R., Voss J.E., Liang C.H., et al. 2015. Identification of common features in prototype broadly neutralizing antibodies to HIV envelope V2 apex to facilitate vaccine design. Immunity. 43, 959–973.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    McGuire A.T., Dreyer A.M., Carbonetti S., et al. 2014. HIV antibodies. Antigen modification regulates competition of broad and narrow neutralizing HIV antibodies. Science. 346, 1380–1383.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Cortez V., Wang B., Dingens A., et al. 2015. The broad neutralizing antibody responses after HIV-1 superinfection are not dominated by antibodies directed to epitopes common in single infection. PLoS Pathog. 11, e1004973.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Lu S. 2009. Heterologous prime-boost vaccination. Curr. Opin. Immunol. 21, 346–351.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Bolhassani A., Kardani K., Vahabpour R., et al. 2015. Prime/boost immunization with HIV-1 MPER-V3 fusion construct enhances humoral and cellular immune responses. Immunol. Lett. 168, 366–373.PubMedCrossRefGoogle Scholar
  124. 124.
    Brown S.A., Surman S.L., Sealy R., et al. 2010. Heterologous prime-boost HIV-1 vaccination regimens in pre-clinical and clinical trials. Viruses. 2, 435–467.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Iyer S.S., Gangadhara S., Victor B., et al. 2016. Viruslike particles displaying trimeric simian immunodeficiency virus (SIV) envelope gp160 enhance the breadth of DNA/modified vaccinia virus Ankara SIV vaccine-induced antibody responses in rhesus macaques. J. Virol. 90, 8842–8854.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Victora G.D., Mesin L. 2014. Clonal and cellular dynamics in germinal centers. Curr. Opin. Immunol. 28, 90–96.PubMedCrossRefGoogle Scholar
  127. 127.
    Rerks-Ngarm S., Pitisuttithum P., Nitayaphan S., et al. 2009. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361, 2209–2220.PubMedCrossRefGoogle Scholar
  128. 128.
    Pitisuttithum P., Gilbert P., Gurwith M., et al. 2006. Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. J. Infect. Dis. 194, 1661–1671.PubMedCrossRefGoogle Scholar
  129. 129.
    Haynes B.F., Gilbert P.B., McElrath M.J., et al. 2012. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N. Engl. J. Med. 366, 1275–1286.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Smith J.M., Amara R.R., McClure H.M., et al. 2004. Multiprotein HIV type 1 clade B DNA/MVA vaccine: Construction, safety, and immunogenicity in Macaques. AIDS Res. Hum. Retroviruses. 20, 654–665.PubMedCrossRefGoogle Scholar
  131. 131.
    Chamcha V., Kannanganat S., Gangadhara S., et al. 2016. Strong, but age-dependent, protection elicited by a deoxyribonucleic acid/modified vaccinia Ankara simian immunodeficiency virus vaccine. Open Forum Infect. Dis. 3, ofw034.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Derdeyn C.A., Moore P.L., Morris L. 2014. Development of broadly neutralizing antibodies from autologous neutralizing antibody responses in HIV infection. Curr. Opin. HIV AIDS. 9, 210–216.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Robinson H.L. 2013. Non-neutralizing antibodies in prevention of HIV infection. Expert Opin. Biol. Ther. 13, 197–207.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Ivanovsky Institute of VirologyGamaleya Federal Research Center of Epidemiology and MicrobiologyMoscowRussia

Personalised recommendations