Molecular Biology

, Volume 51, Issue 6, pp 874–886 | Cite as

T Lymphocytes with Modified Specificity in the Therapy of Malignant Diseases

Current Trends in the Application of Monoclonal Antibodies Special Issue


Immunotherapy is one of the most rapidly progressing and promising fields in antitumor therapy. It is based on the idea of using immune cells of patient or healthy donors for elimination of malignant cells. T lymphocytes play a key role in cell-mediated immunity including the response to tumors. Recently developed approaches of altering antigen specificity of T cells consist of their genetic modification (introduction of additional T cell receptor or chimeric antigen receptor), as well as the use of bispecific molecules that crosslink target and effector cells. These approaches are used to retarget T lymphocytes with arbitrary specificity against tumor antigens in the context of antitumor immunotherapy. The high potential of T cell immunotherapy was demonstrated in a number of clinical trials. In the future, it is possible to develop approaches to the therapy of a wide spectrum of tumors. The selection of the optimal antigen is the main challenge in successful T cell immunotherapy, as it largely determines the effectiveness of the treatment, as well as the risk of side effects. In this review we discuss potential methods of modification of T cell specificity and targets for immunotherapy.


T-cell receptor chimeric antigenic receptor bispecific molecules immunotherapy adoptive transfer tumor antigens minor histocompatibility antigens 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schreiber R.D., Old L.J., Smyth M.J. 2011. Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion. Science. 331 (6024), 1565–1570.PubMedCrossRefGoogle Scholar
  2. 2.
    Burnet F.M. 1967. Immunological aspects of malignant disease. Lancet. 1 (7501), 1171–1174.PubMedCrossRefGoogle Scholar
  3. 3.
    Burne F.M. 1970. The concept of immunological surveillance. Prog. Exp. Tumor Res. 13, 1–27.CrossRefGoogle Scholar
  4. 4.
    Thomas L. 1982. On immunosurveillance in human cancer. Yale J. Biol. Med. 55 (3–4), 329–333.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Pradeu T., Vivier E. 2016. The discontinuity theory of immunity. Sci. Immunol. 1 (1), aag0479.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Poggi A., Zocchi M.R. 2006. Mechanisms of tumor escape: Role of tumor microenvironment in inducing apoptosis of cytolytic effector cells. Arch. Immunol. Ther. Exp. 54 (5), 323–333.CrossRefGoogle Scholar
  7. 7.
    Adler A.J. 2007. Mechanisms of T cell tolerance and suppression in cancer mediated by tumor-associated antigens and hormones. Curr. Cancer Drug Targets. 7 (1), 3–14.PubMedCrossRefGoogle Scholar
  8. 8.
    Lee S., Margolin K. 2011. Cytokines in cancer immunotherapy. Cancers. 3 (4), 3856–3893.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Rosenberg S.A., Lotze M.T., Muul L.M., et al. 1985. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N. Eng. J. Med. 313 (23), 1485–1492.CrossRefGoogle Scholar
  10. 10.
    Kirkwood J. 2002. Cancer immunotherapy: The interferon- alpha experience. Semin. Oncol. 29 (3, Suppl. 7), 18–26.PubMedCrossRefGoogle Scholar
  11. 11.
    Morgan D.A., Ruscetti F.W., Gallo R. 1976. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science. 193 (4257), 1007–1008.PubMedCrossRefGoogle Scholar
  12. 12.
    Kumar S.K., Vij R., Noga S.J., et al. 2017. Treating multiple myeloma patients with oral therapies. Clin. Lymphoma Myeloma Leuk. 17 (5), 243–251.PubMedCrossRefGoogle Scholar
  13. 13.
    Oldfield V., Keating G.M., Perry C.M. 2005. Imiquimod: In superficial basal cell carcinoma. Am. J. Clin. Dermatol. 6 (3), 195–200; discussion 201–192.PubMedCrossRefGoogle Scholar
  14. 14.
    Breyer J., Burger M., Otto W. 2016. Immunotherapy in urothelial carcinoma: Fade or future standard? Transl. Androl. Urol. 5 (5), 662–667.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Melero I., Hervas-Stubbs S., Glennie M., et al. 2007. Immunostimulatory monoclonal antibodies for cancer therapy. Nat. Rev. Cancer. 7 (2), 95–106.PubMedCrossRefGoogle Scholar
  16. 16.
    Topalian S.L., Taube J.M., Anders R.A., et al. 2016. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer. 16 (5), 275–287.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Bogolyubova A.V., Efimov G.A., Drutskaya M.S., et al. 2015. Cancer immunotherapy based on the blockade of immune checkpoints. Med. Immunol. (Russ.). 17 (5), 395–406.CrossRefGoogle Scholar
  18. 18.
    Holmes J.P., Clifton G.T., Patil R., et al. 2011. Use of booster inoculations to sustain the clinical effect of an adjuvant breast cancer vaccine: From US Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Cancer. 117 (3), 463–471.PubMedCrossRefGoogle Scholar
  19. 19.
    Rosenberg S.A., Yang J.C., Sherry R.M., et al. 2011. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17 (13), 4550–4557.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Rosenberg S.A., Spiess P., Lafreniere R. 1986. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science. 233 (4770), 1318–1321.PubMedCrossRefGoogle Scholar
  21. 21.
    Huh J.W., Lee J.H., Kim H.R. 2012. Prognostic significance of tumor-infiltrating lymphocytes for patients with colorectal cancer. Arch. Surg. 147 (4), 366–372.PubMedCrossRefGoogle Scholar
  22. 22.
    Reynders K., De Ruysscher D. 2016. Tumor infiltrating lymphocytes in lung cancer: A new prognostic parameter. J. Thorac. Dis. 8 (8), E833–E835.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kawata A., Une Y., Hosokawa M., et al. 1992. Tumorinfiltrating lymphocytes and prognosis of hepatocellular carcinoma. Jpn. J. Clin. Oncol. 22 (4), 256–263.PubMedGoogle Scholar
  24. 24.
    Theoleyre S., Mori K., Cherrier B., et al. 2005. Phenotypic and functional analysis of lymphocytes infiltrating osteolytic tumors: Use as a possible therapeutic approach of osteosarcoma. BMC Cancer. 5, 123–132.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Chapuis A.G., Desmarais C., Emerson R., et al. 2017. Tracking the fate and origin of clinically relevant adoptively transferred CD8+ T cells in vivo. Sci. Immunol. 2 (8), 1–11. doi 10.1126/sciimmunol.aal2568CrossRefGoogle Scholar
  26. 26.
    Schwartzentruber D.J., Lawson D.H., Richards J.M., et al. 2011. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. New Engl. J. Med. 364 (22), 2119–2127.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Bonifaz L.C., Bonnyay D.P., Charalambous A., et al. 2004. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J. Exp. Med. 199 (6), 815–824.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Paczesny S., Banchereau J., Wittkowski K.M., et al. 2004. Expansion of melanoma-specific cytolytic CD8+ T cell precursors in patients with metastatic melanoma vaccinated with CD34+ progenitor-derived dendritic cells. J. Exp. Med. 199 (11), 1503–1511.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Schumacher T.N., Schreiber R.D. 2015. Neoantigens in cancer immunotherapy. Science. 348 (6230), 69–74.PubMedCrossRefGoogle Scholar
  30. 30.
    Kvistborg P., Shu C.J., Heemskerk B., et al. 2012. TIL therapy broadens the tumor-reactive CD8+ T cell compartment in melanoma patients. Oncoimmunology. 1 (4), 409–418.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Andersen R.S., Thrue C.A., Junker N., et al. 2012. Dissection of T-cell antigen specificity in human melanoma. Cancer Res. 72 (7), 1642–1650.PubMedCrossRefGoogle Scholar
  32. 32.
    Vigneron N. 2015. Human tumor antigens and cancer immunotherapy. BioMed Res. Int. 2015, 948501 1–17.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Sato S., Ono N., Steeber D.A., et al. 1996. CD19 regulates B lymphocyte signaling thresholds critical for the development of B-1 lineage cells and autoimmunity. J. Immunol. 157 (10), 4371–4378.PubMedGoogle Scholar
  34. 34.
    Naddafi F., Davami F. 2015. Anti-CD19 monoclonal antibodies: A new approach to lymphoma therapy. Int. J. Mol. Cell. Med. 4 (3), 143–151.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Cooper L.J., Al-Kadhimi Z., DiGiusto D., et al. 2004. Development and application of CD19-specific T cells for adoptive immunotherapy of B cell malignancies. Blood Cell. Mol. Dis. 33 (1), 83–89.CrossRefGoogle Scholar
  36. 36.
    Vallera D.A., Chen H., Sicheneder A.R., et al. 2009. Genetic alteration of a bispecific ligand-directed toxin targeting human CD19 and CD22 receptors resulting in improved efficacy against systemic B cell malignancy. Leukemia Res. 33 (9), 1233–1242.CrossRefGoogle Scholar
  37. 37.
    Kuppers R. 2005. Mechanisms of B-cell lymphoma pathogenesis. Nat. Rev. Cancer. 5 (4), 251–262.PubMedCrossRefGoogle Scholar
  38. 38.
    Cheever M.A., Allison J.P., Ferris A.S., et al. 2009. The prioritization of cancer antigens: A national cancer institute pilot project for the acceleration of translational research. Clin. Cancer Res. 15 (17), 5323–5337.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Tashiro H., Brenner M.K. 2017. Immunotherapy against cancer-related viruses. Cell Res. 27 (1), 59–73.PubMedCrossRefGoogle Scholar
  40. 40.
    Kanakry J.A., Ambinder R.F. 2013. EBV-related lymphomas: New approaches to treatment. Curr. Treat. Options Oncol. 14 (2), 224–236.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ramos C.A., Narala N., Vyas G.M., et al. 2013. Human papillomavirus type 16 E6/E7-specific cytotoxic T lymphocytes for adoptive immunotherapy of HPV-associated malignancies. J. Immunother. 36 (1), 66–76.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Chun E., Lee J., Cheong H.S., et al. 2003. Tumor eradication by hepatitis B virus X antigen-specific CD8+ T cells in xenografted nude mice. J. Immunol. 170 (3), 1183–1190.PubMedCrossRefGoogle Scholar
  43. 43.
    Zhang Y., Liu Y., Moxley K.M., et al. 2010. Transduction of human T cells with a novel T-cell receptor confers anti-HCV reactivity. PLoS Pathog. 6 (7), e1001018 1–13.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Stevanovic S., Pasetto A., Helman S.R., et al. 2017. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science. 356 (6334), 200–205.PubMedCrossRefGoogle Scholar
  45. 45.
    Efimov G.A., Vdovin A.S., Grigoryev A.A., et al. 2015. Immunobiology of acute graft-versus-host disease. Med. Immunol. (Russ.). 17 (6), 499–516.CrossRefGoogle Scholar
  46. 46.
    Shlomchik W.D. 2007. Graft-versus-host disease. Nat. Rev. Immunol. 7 (5), 340–352.PubMedCrossRefGoogle Scholar
  47. 47.
    Bleakley M., Riddell S.R. 2011. Exploiting T cells specific for human minor histocompatibility antigens for therapy of leukemia. Immunol. Cell Biol. 89 (3), 396–407.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Griffioen M., van Bergen C.A., Falkenburg J.H. 2016. Autosomal minor histocompatibility antigens: How genetic variants create diversity in immune targets. Front. Immunol. 7 (100), 1–9.Google Scholar
  49. 49.
    Bykova N.A., Malko D.B., Vdovin A.S., et al. 2016. In silico analysis of single nucleotide polymorphism immunogenic potential in fully HLA-matched transplantation. Ross. Immunol. Zh. 10 (1), 38–48.Google Scholar
  50. 50.
    Heemskerk M.H., Hoogeboom M., de Paus R.A., et al. 2003. Redirection of antileukemic reactivity of peripheral T lymphocytes using gene transfer of minor histocompatibility antigen HA-2-specific T-cell receptor complexes expressing a conserved alpha joining region. Blood. 102 (10), 3530–3540.PubMedCrossRefGoogle Scholar
  51. 51.
    Obenaus M., Leitao C., Leisegang M., et al. 2015. Identification of human T-cell receptors with optimal affinity to cancer antigens using antigen-negative humanized mice. Nat. Biotechnol. 33 (4), 402–407.PubMedCrossRefGoogle Scholar
  52. 52.
    Jackson H.J., Rafiq S., Brentjens R.J. 2016. Driving CAR T-cells forward. Nat. Rev. Clin. Oncol. 13 (6), 370–383.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Frankel S.R., Baeuerle P.A. 2013. Targeting T cells to tumor cells using bispecific antibodies. Curr. Opin. Chem. Biol. 17 (3), 385–392.PubMedCrossRefGoogle Scholar
  54. 54.
    Mahnke Y.D., Brodie T.M., Sallusto F., et al. 2013. The who’s who of T-cell differentiation: Human memory T-cell subsets. Eur. J. Immunol. 43 (11), 2797–2809.PubMedCrossRefGoogle Scholar
  55. 55.
    Klebanoff C.A., Gattinoni L., Palmer D.C., et al. 2011. Determinants of successful CD8+ T-cell adoptive immunotherapy for large established tumors in mice. Clin. Canc. Res. 17 (16), 5343–5352.CrossRefGoogle Scholar
  56. 56.
    Gattinoni L., Lugli E., Ji Y., et al. 2011. A human memory T cell subset with stem cell-like properties. Nat. Med. 17 (10), 1290–1297.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Sommermeyer D., Hudecek M., Kosasih P.L., et al. 2016. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia. 30 (2), 492–500.PubMedCrossRefGoogle Scholar
  58. 58.
    Shedlock D.J., Shen H. 2003. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science. 300 (5617), 337–339.PubMedCrossRefGoogle Scholar
  59. 59.
    Moeller M., Haynes N.M., Kershaw M.H., et al. 2005. Adoptive transfer of gene-engineered CD4+ helper T cells induces potent primary and secondary tumor rejection. Blood. 106 (9), 2995–3003.PubMedCrossRefGoogle Scholar
  60. 60.
    Matsuzaki J., Tsuji T., Luescher I.F., et al. 2015. Direct tumor recognition by a human CD4+ T-cell subset potently mediates tumor growth inhibition and orchestrates anti-tumor immune responses. Sci. Repts. 5, 14896 1–14.CrossRefGoogle Scholar
  61. 61.
    Turtle C.J., Hanafi L.A., Berger C., et al. 2016. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest. 126 (6), 2123–2138.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Pule M.A., Savoldo B., Myers G.D., et al. 2008. Virus-specific T cells engineered to coexpress tumorspecific receptors: Persistence and antitumor activity in individuals with neuroblastoma. Nat. Med. 14 (11), 1264–1270.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Rossig C., Bar A., Pscherer S., et al. 2006. Target antigen expression on a professional antigen-presenting cell induces superior proliferative antitumor T-cell responses via chimeric T-cell receptors. J. Immunother. 29 (1), 21–31.PubMedCrossRefGoogle Scholar
  64. 64.
    Nakazawa Y., Huye L.E., Salsman V.S., et al. 2011. PiggyBac-mediated cancer immunotherapy using EBV-specific cytotoxic T-cells expressing HER2-specific chimeric antigen receptor. Mol. Ther.: J. Am. Soc. Gene Ther. 19 (12), 2133–2143.CrossRefGoogle Scholar
  65. 65.
    Savoldo B., Rooney C.M., Di Stasi A., et al. 2007. Epstein Barr virus-specific cytotoxic T lymphocytes expressing the anti-CD30zeta artificial chimeric T-cell receptor for immunotherapy of Hodgkin disease. Blood. 110 (7), 2620–2630.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Vdovin A.S., Filkin S.Y., Yefimova P.R., et al. 2016. Recombinant MHC tetramers for isolation of virusspecific CD8+ cells from healthy donors: Potential approach for cell therapy of posttransplant cytomegalovirus infection. Biochemistry (Moscow). 81 (11), 1371–1383.PubMedCrossRefGoogle Scholar
  67. 67.
    Lim W.A., June C.H. 2017. The principles of engineering immune cells to treat cancer. Cell. 168 (4), 724–740.PubMedCrossRefGoogle Scholar
  68. 68.
    Johnson L.A., Heemskerk B., Powell D.J. Jr., et al. 2006. Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes. J. Iimmunol. 177 (9), 6548–6559.CrossRefGoogle Scholar
  69. 69.
    Hughes M.S., Yu Y.Y., Dudley M.E., et al. 2005. Transfer of a TCR gene derived from a patient with a marked antitumor response conveys highly active T-cell effector functions. Hum. Gene Ther. 16 (4), 457–472.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Cole D.J., Weil D.P., Shilyansky J., et al. 1995. Characterization of the functional specificity of a cloned T-cell receptor heterodimer recognizing the MART-1 melanoma antigen. Cancer Res. 55 (4), 748–752.PubMedGoogle Scholar
  71. 71.
    Morgan R.A., Dudley M.E., Wunderlich J.R., et al. 2006. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 314 (5796), 126–129.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Johnson L.A., Morgan R.A., Dudley M.E., et al. 2009. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 114 (3), 535–546.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Dossinger G., Bunse M., Bet J., et al. 2013. MHC multimer-guided and cell culture-independent isolation of functional T cell receptors from single cells facilitates TCR identification for immunotherapy. PLoS ONE. 8 (4), e61384.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Wang G.C., Dash P., McCullers J.A., et al. 2012. T cell receptor alphabeta diversity inversely correlates with pathogen-specific antibody levels in human cytomegalovirus infection. Sci. Translat. Med. 4 (128), 128ra142.CrossRefGoogle Scholar
  75. 75.
    Linnemann C., Heemskerk B., Kvistborg P., et al. 2013. High-throughput identification of antigen-specific TCRs by TCR gene capture. Nat. Med. 19 (11), 1534–1541.PubMedCrossRefGoogle Scholar
  76. 76.
    Linnemann C., Mezzadra R., Schumacher T.N. 2014. TCR repertoires of intratumoral T-cell subsets. Immunol. Rev. 257 (1), 72–82.PubMedCrossRefGoogle Scholar
  77. 77.
    Gao L., Bellantuono I., Elsasse A., et al. 2000. Selective elimination of leukemic CD34+ progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood. 95 (7), 2198–2203.PubMedGoogle Scholar
  78. 78.
    Stanislawski T., Voss R.H., Lotz C., et al. 2001. Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nat. Immunol. 2 (10), 962–970.PubMedCrossRefGoogle Scholar
  79. 79.
    Zhao Y., Bennett A.D., Zheng Z., et al. 2007. Highaffinity TCRs generated by phage display provide CD4+ T cells with the ability to recognize and kill tumor cell lines. J. Immunol. 179 (9), 5845–5854.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Khamaganova E.G., Kuzminova E.P., Yushkova A.A., et al. 2016. Distribution of HLA-haplotypes in the bone marrow donor register of National Research Center for Hematology of the Russian Ministry of Health. Hematol. Transfusiol. 61 (S1), 78.Google Scholar
  81. 81.
    van Loenen M.M., de Boer R., Amir A.L. et al. 2010. Mixed T cell receptor dimers harbor potentially harmful neoreactivity. Proc. Natl. Acad. Sci. U. S. A. 107 (24), 10972–10977.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Bendle G.M., Linnemann C., Hooijkaas A.I., et al. 2010. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat. Med. 16 (5), 565–570.PubMedCrossRefGoogle Scholar
  83. 83.
    Starck L., Popp K., Pircher H., et al. 2014. Immunotherapy with TCR-redirected T cells: Comparison of TCR-transduced and TCR-engineered hematopoietic stem cell-derived T cells. J. Immunol. 192 (1), 206–213.PubMedCrossRefGoogle Scholar
  84. 84.
    Hart D.P., Xue S.A., Thomas S., et al. 2008. Retroviral transfer of a dominant TCR prevents surface expression of a large proportion of the endogenous TCR repertoire in human T cells. Gene Ther. 15 (8), 625–631.PubMedCrossRefGoogle Scholar
  85. 85.
    Bunse M., Bendle G.M., Linnemann C., et al. 2014. RNAi-mediated TCR knockdown prevents autoimmunity in mice caused by mixed TCR dimers following TCR gene transfer. Mol. Ther. 22 (11), 1983–1991.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Ridgway J.B., Presta L.G., Carter P. 1996. ‘Knobsinto- holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng. 9 (7), 617–621.PubMedCrossRefGoogle Scholar
  87. 87.
    Parkhurst M.R., Yang J.C., Langan R.C., et al. 2011. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther. 19 (3), 620–626.PubMedCrossRefGoogle Scholar
  88. 88.
    Morgan R.A., Chinnasamy N., Abate-Daga D., et al. 2013. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J. Immunother. 36 (2), 133–151.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Robbins P.F., Kassim S.H., Tran T.L., et al. 2015. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: Longterm follow-up and correlates with response. Clin. Cancer Res. 21 (5), 1019–1027.PubMedCrossRefGoogle Scholar
  90. 90.
    Sadelain M., Brentjens R., Riviere I. 2013. The basic principles of chimeric antigen receptor design. Cancer Discov. 3 (4), 388–398.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Kershaw M.H., Westwood J.A., Parker L.L., et al. 2006. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin. Cancer Res. 12 (20, Pt. 1), 6106–6115.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Lamers C.H., Sleijfer S., Vulto A.G., et al. 2006. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: First clinical experience. J. Clin. Oncol. 24 (13), e20–e22.PubMedCrossRefGoogle Scholar
  93. 93.
    Park J.R., Digiusto D.L., Slovak M., et al. 2007. Adoptive transfer of chimeric antigen receptor redirected cytolytic T lymphocyte clones in patients with neuroblastoma. Mol. Ther. 15 (4), 825–833.PubMedCrossRefGoogle Scholar
  94. 94.
    Ahmed N., Brawley V.S., Hegde M., et al. 2015. Human epidermal growth factor receptor 2 (HER2)- specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J. Clin.Oncol. 33 (15), 1688–1696.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Brown C.E., Badie B., Barish M.E., et al. 2015. Bioactivity and safety of IL13Ralpha2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin. Cancer Res. 21 (18), 4062–4072.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Kochenderfer J.N., Wilson W.H., Janik J.E., et al. 2010. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood. 116 (20), 4099–4102.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Kochenderfer J.N., Dudley M.E., Feldman S.A., et al. 2012. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 119 (12), 2709–2720.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Porter D.L., Levine B.L., Kalos M., et al. 2011. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Eng. J. Med. 365 (8), 725–733.CrossRefGoogle Scholar
  99. 99.
    Morgan R.A., Yang J.C., Kitano M., et al. 2010. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18 (4), 843–851.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Davila M.L., Riviere I., Wang X., et al. 2014. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6 (224), 224–225.CrossRefGoogle Scholar
  101. 101.
    Grupp S.A., Kalos M., Barrett D., et al. 2013. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Eng. J. Med. 368 (16), 1509–1518.CrossRefGoogle Scholar
  102. 102.
    Maude S.L., Frey N., Shaw P.A., et al. 2014. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Eng. J. Med. 371 (16), 1507–1517.CrossRefGoogle Scholar
  103. 103.
    Lee D.W., Kochenderfer J.N., Stetler-Stevenson M., et al. 2015. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet. 385 (9967), 517–528.PubMedCrossRefGoogle Scholar
  104. 104.
    Yang F., Wen W., Qin W. 2016. Bispecific antibodies as a development platform for new concepts and treatment strategies. Int. J. Mol. Sci. 18 (1), 48 1–21.PubMedCentralCrossRefGoogle Scholar
  105. 105.
    Spiess C., Zhai Q., Carter P.J. 2015. Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol. Immunol. 67 (2, Pt. A), 95–106.PubMedCrossRefGoogle Scholar
  106. 106.
    Chames P., Baty D. 2009. Bispecific antibodies for cancer therapy: The light at the end of the tunnel? MAbs. 1 (6), 539–547.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Manzke O., Titzer S., Tesch H., et al. 1997. CD3 × CD19 bispecific antibodies and CD28 costimulation for locoregional treatment of low-malignancy non- Hodgkin’s lymphoma. Cancer Immunol. Immunother. 45 (3–4), 198–202.PubMedCrossRefGoogle Scholar
  108. 108.
    Shen J., Zhu Z. 2008. Catumaxomab, a rat/murine hybrid trifunctional bispecific monoclonal antibody for the treatment of cancer.Curr. Opin. Mol. Ther. 10 (3), 273–284.Google Scholar
  109. 109.
    Spizzo G., Went P., Dirnhofer S., et al. 2004. High Ep-CAM expression is associated with poor prognosis in node-positive breast cancer. Breast Cancer Res. Treat. 86 (3), 207–213.PubMedCrossRefGoogle Scholar
  110. 110.
    Spizzo G., Went P., Dirnhofer S., et al. 2006. Overexpression of epithelial cell adhesion molecule (Ep- CAM) is an independent prognostic marker for reduced survival of patients with epithelial ovarian cancer. Gynecol. Oncol. 103 (2), 483–488.PubMedCrossRefGoogle Scholar
  111. 111.
    Went P., Vasei M., Bubendorf L., et al. 2006. Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers. Br. J. Cancer. 94 (1), 128–135.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Lindhofer H., Mocikat R., Steipe, B., et al. 1995. Preferential species-restricted heavy/light chain pairing in rat/mouse quadromas. Implications for a single-step purification of bispecific antibodies. J. Immunol. 155 (1), 219–225.PubMedGoogle Scholar
  113. 113.
    Kiewe P., Hasmuller. S., Kahler S., et al. 2006. Phase I trial of the trifunctional anti-HER2 × anti-CD3 antibody ertumaxomab in metastatic breast cancer. Clin. Cancer Res. 12 (10), 3085–3091.PubMedCrossRefGoogle Scholar
  114. 114.
    Buhmann R., Simoes B., Stanglmaier M., et al. 2009. Immunotherapy of recurrent B-cell malignancies after allo-SCT with Bi20 (FBTA05), a trifunctional anti- CD3 × anti-CD20 antibody and donor lymphocyte infusion. Bone Marrow Transplant. 43 (5), 383–397.PubMedCrossRefGoogle Scholar
  115. 115.
    Ruf P., Jager M., Ellwart J., et al. 2004. Two new trifunctional antibodies for the therapy of human malignant melanoma. Int. J. Cancer. 108 (5), 725–732.PubMedCrossRefGoogle Scholar
  116. 116.
    Dreier T., Baeuerle P.A., Fichtner I., et al. 2003. T cell costimulus-independent and very efficacious inhibition of tumor growth in mice bearing subcutaneous or leukemic human B cell lymphoma xenografts by a CD19-/CD3- bispecific single-chain antibody construct. J. Immunol. 170 (8), 4397–4402.PubMedCrossRefGoogle Scholar
  117. 117.
    Schlereth B., Quadt C., Dreier T., et al. 2006. T-cell activation and B-cell depletion in chimpanzees treated with a bispecific anti-CD19/anti-CD3 single-chain antibody construct. Cancer Immunol. Immunother. 55 (5), 503–514.PubMedCrossRefGoogle Scholar
  118. 118.
    Bargou R., Leo E., Zugmaier G., et al. 2008. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science. 321 (5891), 974–977.PubMedCrossRefGoogle Scholar
  119. 119.
    Mack M., Riethmuller G., Kufer P. 1995. A small bispecific antibody construct expressed as a functional single-chain molecule with high tumor cell cytotoxicity. Proc. Natl. Acad. Sci. U. S. A. 92 (15), 7021–7025.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Loffler A., Kufer P., Lutterbuse R., et al. 2000. A recombinant bispecific single-chain antibody, CD19 × CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood. 95 (6), 2098–2103.PubMedGoogle Scholar
  121. 121.
    Brischwein K., Parr L., Pflanz S., et al. 2007. Strictly target cell-dependent activation of T cells by bispecific single-chain antibody constructs of the BiTE class. J. Immunother. 30 (8), 798–807.PubMedCrossRefGoogle Scholar
  122. 122.
    Amann M., D’Argouges S., Lorenczewski G., et al. 2009. Antitumor activity of an EpCAM/CD3-bispe cific BiTE antibody during long-term treatment of mice in the absence of T-cell anergy and sustained cytokine release. J. Immunother. 32 (5), 452–464.PubMedCrossRefGoogle Scholar
  123. 123.
    Hoffmann P., Hofmeister R., Brischwein K., et al. 2005. Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3- bispecific single-chain antibody construct. Int. J. Cancer. 115 (1), 98–104.PubMedCrossRefGoogle Scholar
  124. 124.
    Ferrari F., Bellone S., Black J., et al. 2015. Solitomab, an EpCAM/CD3 bispecific antibody construct (BiTE (R)), is highly active against primary uterine and ovarian carcinosarcoma cell lines in vitro. J. Exp. Clin. Cancer Res. 34, 123. doi 10.1186/s13046-015-0241-7PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Lutterbuese R., Wissing S., Amann M., et al. 2008. Conversion of Cetuximab and Trastuzumab into T cell-engaging BiTE antibodies creates novel drug candidates with superior anti-tumor activity. Cancer Res. 68 (9, Suppl.), 2402–2402.Google Scholar
  126. 126.
    Liddy N., Bossi G., Adams K.J., et al. 2012. Monoclonal TCR-redirected tumor cell killing. Nat. Med. 18 (6), 980–987.PubMedCrossRefGoogle Scholar
  127. 127.
    Bossi G., Buisson S., Oates J., et al. 2014. ImmTACredirected tumour cell killing induces and potentiates antigen cross-presentation by dendritic cells. Cancer Immunol. Immunother. 63 (5), 437–448.PubMedCrossRefGoogle Scholar
  128. 128.
    McCormack E., Adams K.J., Hassan N.J., et al. 2013. Bi-specific TCR-anti CD3 redirected T-cell targeting of NY-ESO-1- and LAGE-1-positive tumors. Cancer Immunol. Immunother. 62 (4), 773–785.PubMedCrossRefGoogle Scholar
  129. 129.
    Oates J., Jakobsen B.K. 2013. ImmTACs: Novel bispecific agents for targeted cancer therapy. Oncoimmunology. 2 (2), e22891 1–3.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Pecorari F., Tissot A.C., Pluckthun A. 1999. Folding, heterodimeric association and specific peptide recognition of a murine alphabeta T-cell receptor expressed in Escherichia coli. J. Mol. Biol. 285 (4), 1831–1843.PubMedCrossRefGoogle Scholar
  131. 131.
    Schodin B.A., Schlueter C.J., Kranz D.M. 1996. Binding properties and solubility of single-chain T cell receptors expressed in E. coli. Mol. Immunol. 33 (9), 819–829.PubMedCrossRefGoogle Scholar
  132. 132.
    Boulter J.M., Glick M., Todorov P.T., et al. 2003. Stable, soluble T-cell receptor molecules for crystallization and therapeutics. Protein Eng. 16 (9), 707–711.PubMedCrossRefGoogle Scholar
  133. 133.
    Cole D.K., Yuan F., Rizkallah P.J., et al. 2009. Germ line-governed recognition of a cancer epitope by an immunodominant human T-cell receptor. J. Biol. Chem. 284 (40), 27281–27289.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Li Y., Moysey R., Molloy P.E., et al. 2005. Directed evolution of human T-cell receptors with picomolar affinities by phage display. Nat. Biotechnol. 23 (3), 349–354.PubMedCrossRefGoogle Scholar
  135. 135.
    Dunn S.M., Rizkallah P.J., Baston E., et al. 2006. Directed evolution of human T cell receptor CDR2 residues by phage display dramatically enhances affinity for cognate peptide-MHC without increasing apparent cross-reactivity. Protein Sci. 15 (4), 710–721.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Sergeeva A., Alatrash G., He H., et al. 2011. An anti- PR1/HLA-A2 T-cell receptor-like antibody mediates complement-dependent cytotoxicity against acute myeloid leukemia progenitor cells. Blood. 117 (16), 4262–4272.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Wittman V.P., Woodburn D., Nguyen T., et al. 2006. Antibody targeting to a class I MHC-peptide epitope promotes tumor cell death. J. Immunol. 177 (6), 4187–4195.PubMedCrossRefGoogle Scholar
  138. 138.
    Chames P., Willemsen R.A., Rojas G., et al. 2002. TCR-like human antibodies expressed on human CTLs mediate antibody affinity-dependent cytolytic activity. J. Immunol. 169 (2), 1110–1118.PubMedCrossRefGoogle Scholar
  139. 139.
    Stewart-Jones G., Wadle A., Hombach A., et al. 2009. Rational development of high-affinity T-cell receptorlike antibodies. Proc. Natl. Acad. Sci. U. S. A. 106 (14), 5784–5788.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Denkberg G., Lev A., Eisenbach L., et al. 2003. Selective targeting of melanoma and APCs using a recombinant antibody with TCR-like specificity directed toward a melanoma differentiation antigen. J. Immunol. 171 (5), 2197–2207.PubMedCrossRefGoogle Scholar
  141. 141.
    Krogsgaard M., Wucherpfennig K.W., Cannella B., et al. 2000. Visualization of myelin basic protein (MBP. T cell epitopes in multiple sclerosis lesions using a monoclonal antibody specific for the human histocompatibility leukocyte antigen (HLA)-DR2-MBP 85-99 complex. J. Exp. Med. 191 (8), 1395–1412.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Miller K.R., Koide A., Leung B., et al. 2012. T cell receptor-like recognition of tumor in vivo by synthetic antibody fragment. PLoS ONE. 7 (8), e43746.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Cohen M., Reiter Y., (2013). T-cell receptor-like antibodies: Targeting the intracellular proteome therapeutic potential and clinical applications. Antibodies. 2 (3), 517–534.Google Scholar
  144. 144.
    Spanier J.A., Frederick D.R., Taylor J.J., et al. 2016. Efficient generation of monoclonal antibodies against peptide in the context of MHCII using magnetic enrichment. Nat. Commun. 7, 11804, 1–11.Google Scholar
  145. 145.
    Dao T., Pankov D., Scott A., et al. 2015. Therapeutic bispecific T-cell engager antibody targeting the intracellular oncoprotein WT1. Nat. Biotechnol. 33 (10), 1079–1086.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Dao T., Korontsvit T., Zakhaleva V., et al. 2017. An immunogenic WT1-derived peptide that induces T cell response in the context of HLA-A*02:01 and HLA-A*24:02 molecules. Oncoimmunology. 6 (2), e1252895.PubMedCrossRefGoogle Scholar
  147. 147.
    Friedman M., Stahl S. 2009. Engineered affinity proteins for tumour-targeting applications. Biotechnol. Appl. Biochem. 53 (1), 1–29.PubMedCrossRefGoogle Scholar
  148. 148.
    Gorchakov A.A., Kulemzin S.V., Volkova O.Yu., et al. 2016. Chimeric antigenic receptors for adaptive T-cell therapy. Ross. Bioterapevt. Zh. 15 (1), 25–26.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.National Research Center for HematologyMinistry of Healthcare of the Russian FederationMoscowRussia

Personalised recommendations