Advertisement

Molecular Biology

, Volume 51, Issue 6, pp 813–818 | Cite as

Analysis of the Specificity of IgA Antibodies Produced in the Mouse Small Intestine

  • N. E. Sharanova
  • J. Ninnemann
  • M. A. Bondareva
  • Y. K. Semin
  • A. V. Nomokonova
  • A. A. Kruglov
Current Trends in the Application of Monoclonal Antibodies Special Issue

Abstract

Intestinal microbiota controls multiple aspects of body homeostasis. The microbiota composition changes easily in response to internal or external factors, which may result in dysbiosis and associated inflammatory reactions. Thus, maintaining the microbiota composition by the host immune system is crucial, and one of the main mechanisms for microbiota control is production of immunoglobulin A (IgA) at mucosal surfaces. The molecular mechanisms regulating the interactions between the immune system and microbiota remain obscure. A panel of hybridoma cell lines was constructed to produce monoclonal IgA antibodies specific to various commensal bacteria present in intestinal microbiota. The panel can be used to further understand the mechanisms whereby the adaptive immune system controls the microbiota composition.

Keywords

immunoglobulin A IgA microbiota 

Abbreviations

IEC

intestinal epithelial cell

pIgA

polymeric IgA

pIgR

polymeric Ig receptor

SC

secretory component

SIgA

secretory IgA.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belkaid Y., Hand T.W. 2014. Role of the microbiota in immunity and inflammation. Cell. 157, 121–141.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    van der Waaij L.A., Limburg P.C., Mesander G., et al. 1996. In vivo IgA coating of anaerobic bacteria in human faeces. Gut. 38, 348–354.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    De Palma, G., Nadal I., Medina M., et al. 2010. Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol. 10, 63. doi 10.1186/1471-2180-10-63CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kamada N., Seo S.U., Chen G.Y., et al. 2013. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 13, 321–335.CrossRefPubMedGoogle Scholar
  5. 5.
    Reikvam D.H., Derrien M., Islam R., et al. 2012. Epithelial–microbial crosstalk in polymeric Ig receptor deficient mice. Eur. J. Immunol. 42, 2959–2970.CrossRefPubMedGoogle Scholar
  6. 6.
    Mestecky J., Russell M.W., Elson C.O. 1999. Intestinal IgA: Novel views on its function in the defence of the largest mucosal surface. Gut. 44, 2–5.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Peterson D.A., McNulty N.P., Guruge J.L., et al. 2007. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe. 2, 328–339.CrossRefPubMedGoogle Scholar
  8. 8.
    Fagarasan S., Kawamoto S., Kanagawa O., et al. 2010. Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis. Annu. Rev. Immunol. 28, 243–273.CrossRefPubMedGoogle Scholar
  9. 9.
    Macpherson A.J., Uhr T. 2004. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science. 303, 1662–1665.CrossRefPubMedGoogle Scholar
  10. 10.
    Macpherson A.J., McCoy K.D., Johansen F.E., et al. 2008. The immune geography of IgA induction and function. Mucosal. Immunol. 1, 11–22.CrossRefPubMedGoogle Scholar
  11. 11.
    Cong Y., Feng T., Fujihashi K., et al. 2009. A dominant, coordinated T regulatory cell–IgA response to the intestinal microbiota. Proc. Natl. Acad. Sci. U. S. A. 106, 19256–19261.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fagarasan S., Muramatsu M., Suzuki K., et al. 2002. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science. 298, 1424–1427.CrossRefPubMedGoogle Scholar
  13. 13.
    Tsuruta T., Inoue R., Nojima I., et al. 2009. The amount of secreted IgA may not determine the secretory IgA coating ratio of gastrointestinal bacteria. FEMS Immunol. Med. Microbiol. 56, 185–189.CrossRefPubMedGoogle Scholar
  14. 14.
    Tiller T., Meffre E., Yurasov S., et al. 2008. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J. Immunol. Methods. 329, 112–124.CrossRefPubMedGoogle Scholar
  15. 15.
    Booijink C.C., Zoetendal E.G., Kleerebezem M., et al. 2007. Microbial communities in the human small intestine: Coupling diversity to metagenomics. Future Microbiol. 2, 285–295.CrossRefPubMedGoogle Scholar
  16. 16.
    Karlsson H., Larsson P., Wold A.E., et al. 2004. Pattern of cytokine responses to Gram-positive and gram-negative commensal bacteria is profoundly changed when monocytes differentiate into dendritic cells. Infect. Immun. 72, 2671–2678.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sizemore R.K., Caldwell J.J., Kendrick A.S. 1990. Alternate Gram staining technique using a fluorescent lectin. Appl. Environ. Microbiol. 56, 2245–2247.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Rojas R., Apodaca G. 2002. Immunoglobulin transport across polarized epithelial cells. Nat. Rev. Mol. Cell Biol. 3, 944–955.CrossRefPubMedGoogle Scholar
  19. 19.
    Royle L., Roos A., Harvey D.J., et al. 2003. Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems. J. Biol. Chem. 278, 20140–20153.CrossRefPubMedGoogle Scholar
  20. 20.
    Mestecky J., Russell M.W. 2009. Specific antibody activity, glycan heterogeneity and polyreactivity contribute to the protective activity of S-IgA at mucosal surfaces. Immunol. Lett. 124, 57–62.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mathias A., Corthesy B. 2011. Recognition of grampositive intestinal bacteria by hybridoma- and colostrum-derived secretory immunoglobulin A is mediated by carbohydrates. J. Biol. Chem. 286, 17239–17247.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Strugnell R.A., Wijburg O.L. 2010. The role of secretory antibodies in infection immunity. Nat. Rev. Microbiol. 8, 656–667.CrossRefPubMedGoogle Scholar
  23. 23.
    Gutzeit C., Magri G., Cerutti A. 2014. Intestinal IgA production and its role in host-microbe interaction. Immunol. Rev. 260, 76–85.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wotzka S.Y., Nguyen B.D., Hardt W.D. 2017. Salmonella typhimurium diarrhea reveals basic principles of enteropathogen infection and disease-promoted DNA exchange. Cell Host Microbe. 21, 443–454.CrossRefPubMedGoogle Scholar
  25. 25.
    Endt K., Stecher B., Chaffron S., et al. 2010. The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLoS Pathog. 6, e1001097.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Moor K., Wotzka S.Y., Toska A., et al. 2016. Peracetic acid treatment generates potent inactivated oral vaccines from a broad range of culturable bacterial species. Front Immunol. 7, 34.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Forbes S.J., Martinelli D., Hsieh C., et al. 2012. Association of a protective monoclonal IgA with the O antigen of Salmonella enteric serovar typhimurium impacts type 3 secretion and outer membrane integrity. Infect. Immun. 80, 2454–2463.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Michetti P., Mahan M.J., Slauch J.M., et al. 1992. Monoclonal secretory immunoglobulin A protects mice against oral challenge with the invasive pathogen Salmonella typhimurium. Infect. Immun. 60, 1786–1792.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Michetti P., Porta N., Mahan M.J., et al. 1994. Monoclonal immunoglobulin A prevents adherence and invasion of polarized epithelial cell monolayers by Salmonella typhimurium. Gastroenterology. 107, 915–923.CrossRefPubMedGoogle Scholar
  30. 30.
    Moor K., Diard M., Sellin M.E., et al. 2017. Highavidity IgA protects the intestine by enchaining growing bacteria. Nature. 544, 498–502.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • N. E. Sharanova
    • 1
    • 2
  • J. Ninnemann
    • 3
  • M. A. Bondareva
    • 1
    • 2
  • Y. K. Semin
    • 1
    • 2
  • A. V. Nomokonova
    • 1
    • 2
  • A. A. Kruglov
    • 1
    • 3
  1. 1.Belozerskii Institute of Physico-Chemical BiologyMoscow State UniversityMoscowRussia
  2. 2.Immunology Department, Biological FacultyMoscow State UniversityMoscowRussia
  3. 3.German Rheumatism Research Center (DRFZ), a Leibniz InstituteBerlinGermany

Personalised recommendations