Molecular Biology

, Volume 51, Issue 6, pp 900–905 | Cite as

Antibody Engineering: From the Idea to Its Implementation

Current Trends in the Application of Monoclonal Antibodies Special Issue


The late 1970s brought opportunities to create proteins with new properties and, in particular, various derivatives of mouse monoclonal antibodies (mAbs) owing to the discoveries in molecular and cell biology and the development of bioengineering. Studies of mouse/human “chimeric” antibodies, miniantibodies to be synthesized in bacterial cells, full-size single-chain antibodies, complexes of miniantibodies with intramolecular chaperones, and other approaches made it possible to create a multitude of multifunctional biopreparations with predefined properties. The review describes, with the example of one research team, how studies in the field began and what the basis for their progress was.


recombinant antibodies chimeric antibodies single-chain antibodies immunoglobulin isotypes 



quantum dot


monoclonal antibody


polymerase chain reaction


variable domain of the light immunoglobulin chain


variable domain of the heavy immunoglobulin chain.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lebedenko E.N., Petrovskaya L.E., Dolgikh D.A., et al. 2015. Man-made antibodies and immunoconjugates with desired properties: Function optimization using structural engineering. Russ. Chem. Rev. 84, 1–26.CrossRefGoogle Scholar
  2. 2.
    Polanovsky O.L., Lebedenko E.N., Deyev S.M. 2012. ERBB oncogene proteins as targets for monoclonal antibodies. Biochemistry (Moscow). 77, 227–245.CrossRefGoogle Scholar
  3. 3.
    Deyev S.M., Lebedenko E.N. (2009). Modern technologies for creating synthetic antibodies for clinical application. Acta Naturae. 1, 32–50.Google Scholar
  4. 4.
    Timofeev V.P., Dudich I.V., Sykulev Y.K., et al. 1979. Slow conformational change in anti-dansyl antibody as a consequence of hapten binding: Demonstration by ESR spectra. FEBS Lett. 102, 103–106.CrossRefPubMedGoogle Scholar
  5. 5.
    Ovchnnikov Yu.A., Egorov Ts.A., Aldanova N.A., et al. 1973. The complete amino acid sequence of cytoplasmic aspartate aminotransferase from pig heart. FEBS Lett. 29, 31–34.CrossRefGoogle Scholar
  6. 6.
    Nosikov V.V., Braga E.A., Karlishev A.V., et al. 1976. Protection of particular cleavage sites of restriction endonucleases by distamycin A and actinomycin D. Nucleic Acids Res. 3, 2293–2301.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Polyanovsky O.L., Nosikov V.V., Zhuze A.L., et al. 1979. Regulation of restriction endonuclease activity with antibiotics. In: Advances in Enzyme Regulation, vol. 17. Ed. Weber G. Pergamon Press, pp. 307–321.Google Scholar
  8. 8.
    Hozumi N, Tonegawa S. 1976. Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. Proc. Natl. Acad. Sci. U. S. A. 73, 3628–3632.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kohler G., Milstein C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 256, 495–497.CrossRefPubMedGoogle Scholar
  10. 10.
    Ehrlich P. 1967. In: Nobel Lectures, Physiology or Medicine 1901–1921. Amsterdam: Elsevier, p. 304.Google Scholar
  11. 11.
    Deev S.M., Barbakar’ N.I., Karlyshev A.V., et al. 1980. Synthesis of double-stranded DNA on light immunoglobulin chain matrix RNA. Mol. Biol. (Moscow). 14, 413–420.Google Scholar
  12. 12.
    Morrison S.L., Johnson M.J., Herzenberg L.A., Oi V.T. 1984. Chimeric human antibody molecules: Mouse antigen-binding domains with human constant region domains. Proc. Natl. Acad. Sci. U. S. A. 81, 6851–6855.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Neuberger M.S., Williams G.T., Fox R.O. 1984. Recombinant antibodies possessing novel effector functions. Nature. 312, 604–608.CrossRefPubMedGoogle Scholar
  14. 14.
    Deyev S.M., Combriato G., Klobeck H.G., Zachau H.G. 1987. Reciprocal recombination products of V-J joining reactions in human lymphoid cell lines. Nucleic Acids Res. 15, 1–14.CrossRefGoogle Scholar
  15. 15.
    Deyev S.M., Ajalov V.A., Urakov D.N., et al. 1987. Investigation of immunoglobulin light and heavy chain genes responsible for the synthesis of antibodies in hybridoma PTF-02. In: Metabolism and Enzymology of Nucleic Acids, vol. 6, pp. 371–381.Google Scholar
  16. 16.
    Deyev S.M., Urakov D.N., Stepchenko A.G., Polanovsky O.L. 1991. Allelic variants of rearranged immunoglobulin heavy and light chain genes in hybridoma PTF-02 and parent myeloma. Genetica. 85, 45–51.CrossRefPubMedGoogle Scholar
  17. 17.
    Urakov D.N., Deyev S.M., Polyanovsky O.L. 1989. The structure of the expressible VH gene from a hybridoma producing monoclonal antibodies against transferrin. Nucleic Acids Res. 17, 9481.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Adzhalov V.A., Stepchenko A.G., Deev S.A., Polianovskiĭ O.L. 1987. The structure of the variable gene for the kappa chains of antibodies produced by hybridoma PTF-02. Mol. Biol. (Moscow). 21, 1137–1141.Google Scholar
  19. 19.
    Deev S.M., Rad’ko B.V., Liber A., Polianovskiĭ O.L. 1991. Synthesis of recombinant antibodies (mouse/ human) in lymphoid and nonlymphoid cells. Dokl. Akad. Nauk SSSR. 318, 1500–1503.PubMedGoogle Scholar
  20. 20.
    Stepchenko A.G., Luchina N.N., Adzhalov V.A., Polianovskiĭ O.L. 1987. Factors of tissue-specific transcription of immunoglobulin kappa genes. Mol. Genet. Mikrobiol. Virusol. 8, 14–16.Google Scholar
  21. 21.
    Scheidereit C., Heguy A., Roeder R.G. 1987. Identification and purification of human lymphoid-specific octamer-binding protein (Otf-2). Cell. 51, 783–793.CrossRefPubMedGoogle Scholar
  22. 22.
    Polanovsky O.L., Stepchenko A.G. 1990. Eukaryotic transcription factors. BioEssays. 12, 205–210.CrossRefGoogle Scholar
  23. 23.
    Deyev S.M., Lieber A., Radko B.V., Polanovsky O.L. 1993. Production of recombinant antibodies in lymphoid and non-lymphoid cells. FEBS Lett. 330, 111–113.CrossRefPubMedGoogle Scholar
  24. 24.
    Deyev S.M., Polanovsky O.L. 1995. Expression of chimeric immunoglobulin genes in mammalian cells. In: Methods in Molecular Biology, vol. 51. Ed. Paul S. Totova, NJ, pp. 251–263.Google Scholar
  25. 25.
    Lieber A., Kiessling U., Strauss M. 1989. High level gene expression in mammalian cells by a nuclear T7-phase RNA polymerase. Nucleic Acids Res. 17, 8485–8493CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rodin D.V., Radko B.V., Kolesnikov V.A., et al. 2004. Expression of the chimeric IgE gene in cell culture and in various mouse tissues. Biochimie. 86, 939–943.CrossRefPubMedGoogle Scholar
  27. 27.
    Martsev S.P., Kravchuk Z.I., Chumanevich A.A., et al. 1998. Antiferritin single-chain antibody: A functional protein with incomplete folding? FEBS Lett. 28, 458–462.CrossRefGoogle Scholar
  28. 28.
    Martsev S.P., Chumanevich A.A., Vlasov A.P., et al. 2000. Antiferritin single-chain Fv fragment is a functional protein with properties of a partially structured state: Comparison with the completely folded V (L) domain. Biochemistry. 39, 8047–8057.CrossRefPubMedGoogle Scholar
  29. 29.
    Martsev S.P., Tsybovsky Y.I., Stremovskiy O.A., et al. 2004. Fusion of the antiferritin antibody VL domain to barnase results in enhanced solubility and altered pH stability. Protein Eng. Des. Sel. 17, 85–93.CrossRefPubMedGoogle Scholar
  30. 30.
    Deyev S.M., Waibel R., Lebedenko E.N., et al. 2003. Design of multivalent complexes using the barnase* barstar module. Nat. Biotechnol. 21, 1486–1492.CrossRefPubMedGoogle Scholar
  31. 31.
    Yuskevich V., Khodarovich Yu., Stremovsky O., et al. 2011. Expression of humanized anti-Her2/neo single chain IgG1-like antibody in mammary glands of transgenic mice. Biochimie. 93, 628–630.CrossRefPubMedGoogle Scholar
  32. 32.
    Edelweiss E., Balandin T.G., Ivanova J.L., et al. 2008. Barnase as a new therapeutic agent triggering apoptosis in human cancer cells. PLoS ONE. 3, e2434.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yazynin S.A., Deyev S.M., Jucovic M., Hartley R.W. 1996. A plasmid vector with positive selection and directional cloning based on a conditionally lethal gene. Gene. 169, 131–132.CrossRefPubMedGoogle Scholar
  34. 34.
    Glinka E.M., Edelweiss E.F., Sapozhnikov A.M., Deyev S.M. 2006. A new vector for controllable expression of an anti-HER2/neu mini-antibody-barnase fusion protein in HEK 293T cells. Gene. 366, 97–103.CrossRefPubMedGoogle Scholar
  35. 35.
    Balandin T.G., Edelweiss E., Andronova N.V., et al. 2011. Antitumor activity and toxicity of anti-HER2 immunoRNase scFv 4D5-dibarnase in mice bearing human breast cancer xenografts. Invest. New Drugs. 29, 22–32.CrossRefPubMedGoogle Scholar
  36. 36.
    Deyev S.M., Lebedenko E.N. 2015. Supramolecular agents for teranostics. Russ. J. Bioorg. Chem. 41 (5), 481–493.CrossRefGoogle Scholar
  37. 37.
    Sreenivasan V.K.A., Ivukina E.A., Deng W., et al. 2011. Barstar:barnase—a versatile platform for colloidal diamond bioconjugation. J. Mater. Chem. 21, 65–68.CrossRefGoogle Scholar
  38. 38.
    Aghayeva U.F., Nikitin M.P., Lukash S.V., Deyev S.M. 2013. Denaturation-resistant bifunctional colloidal superstructures assembled via the proteinaceous barnase–barstar interface. ACS Nano. 7, 950–961.CrossRefPubMedGoogle Scholar
  39. 39.
    Generalova A.N., Sizova S.V., Zdobnova T.A., et al. 2011. Submicron polymer particles containing fluorescent semiconductor nanocrystals CdSe/ZnS for bioassays. Nanomedicine. 6, 195–209.CrossRefPubMedGoogle Scholar
  40. 40.
    Lebedenko E.N., Balandin T.G., Edelweiss E.F., et al. 2007. Visualization of cancer cells by means of the fluorescent EGFP-barnase protein. Dokl. Biochem. Biophys. 414, 120–123.CrossRefPubMedGoogle Scholar
  41. 41.
    Semenyuk E.G., Stremovskiy O.A., Edelweiss E.F., et al. 2007. Expression of single-chain antibody–barstar fusion in plants. Biochimie. 89, 31–38.CrossRefPubMedGoogle Scholar
  42. 42.
    Zdobnova T.A., Lebedenko E.N., Deyev S.M. 2011. Quantum dots for molecular diagnostics of tumors. ActaNaturae. 3, 29–47.Google Scholar
  43. 43.
    Zdobnova T.A., Dorofeev S.G., Tananaev P.N., et al. 2009. Fluorescent immunolabeling of cancer cells by quantum dots and antibody scFv fragment. J. Biomed. Optics. 14, 021004. doi 10.1117/1.3122775CrossRefGoogle Scholar
  44. 44.
    Grebenik E.A., Kostyuk A.B., Deyev S.M. 2016. Upconversion nanoparticles and their hybrid assemblies for biomedical applications. Russ. Chem. Rev. 85, 277–296.CrossRefGoogle Scholar
  45. 45.
    Khaydukov E.V., Mironova K.E., Semchishen V.A., et al. 2016. Riboflavin photoactivation by upconversion nanoparticles for cancer treatment. Sci. Rep. 6, 35103. doi 10.1038/srep35103CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Stepanov A.V., Belogurov A.A., Ponomarenko N.A., et al. 2011. Design of targeted B cell killing agents. PLoS ONE. 6, e20991.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Stepanov A., Belyy A., Kasheverov I., et al. 2016. Development of a recombinant immunotoxin for the immunotherapy of autoreactive lymphocytes expressing MOG-specific BCRs. Biotechnol. Lett. 38, 1173–1180.CrossRefPubMedGoogle Scholar
  48. 48.
    Souslova E.A., Mironova K.E., Deyev S.M. 2017. Applications of genetically encoded photosensitizer miniSOG: From correlative light electron microscopy to immunophotosensitizing. J. Biophoton. 10, 338–352.CrossRefGoogle Scholar
  49. 49.
    Sokolova E., Proshkina G., Kutova O., et al. 2016. Recombinant targeted toxin based on HER2-specific DARPin possesses a strong selective cytotoxic effect in vitro and a potent antitumor activity in vivo. J. Controlled Release. 233, 48–56.CrossRefGoogle Scholar
  50. 50.
    Efimov G.A., Kruglov A.A., Khlopchatnikova Z.V., et al. 2016. Cell-type-restricted anti-cytokine therapy: TNF inhibition from one pathogenic source. Proc. Natl. Acad. Sci. U. S. A. 113, 3006–3011.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Tillib S.V. 2011. “Camel nanoantibody” is an efficient tool for research, diagnostics and therapy. Mol. Biol. (Moscow). 45, 77–85.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations