Molecular Biology

, Volume 51, Issue 6, pp 887–899 | Cite as

Recombinant Monoclonal Antibodies, from Tumor Targeting to Cancer Immunotherapy: A Critical Overview

Current Trends in the Application of Monoclonal Antibodies Special Issue


In view of the explosion of the present clinical use of monoclonal antibodies (mAbs), not only in the treatment of cancer, but also of autoimmune diseases, I was asked to review the development of mAbs in tumor diagnosis and therapy, with some illustrations of our own contribution in the field. The initial use of radiolabeled mAbs for tumor targeting and radioimmunotherapy led to the extensive clinical application of unlabeled, “humanized” mAbs for cancer therapy, which I describe with a critical perspective. The introduction of recombinant bispecific antibodies, capable of bridging T lymphocytes with tumor cells and inducing killing of the cancer cells, was found to be mostly active in the treatment of hematological malignancies. Most interestingly, the use of mAbs not directed to the tumor cells, but to inhibitory receptors expressed by cytotoxic T lymphocytes, which trigger them to kill the cancer cells, represents a new form of active cancer immunotherapy. My motivation in writing this review was related to my long-term interactions with several Russian scientists, mentioned at the end of this article.


аnti-tumor antibodies bispecific antibodies carcinoembryonic antigen rituximab immunotherapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kohler G., Milstein C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 256 (5517), 495–497.CrossRefPubMedGoogle Scholar
  2. 2.
    Gold P., Freedman S.O. 1965. Specific carcinoembryonic antigens of the human digestive system. J. Exp. Med. 122 (3), 467–481.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Mach J.P., Carrel S., Merenda C., et al. 1974. In vivo localisation of radiolabelled antibodies to carcinoembryonic antigen in human colon carcinoma grafted into nude mice. Nature. 248 (5450), 704–706.CrossRefPubMedGoogle Scholar
  4. 4.
    Accolla R.S., Carrel S., Mach J.P. 1980. Monoclonal antibodies specific for carcinoembryonic antigen and produced by two hybrid cell lines. Proc. Natl. Acad. Sci. U. S. A. 77 (1), 563–566.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mach J.P., Pusztaszeri G. 1972. Carcinoembryonic antigen (CEA): Demonstration of a partial identity between CEA and a normal glycoprotein. Immunochemistry. 9 (10), 1031–1034.CrossRefPubMedGoogle Scholar
  6. 6.
    von Kleist S., Chavanel G., Burtin P. 1972. Identification of an antigen from normal human tissue that crossreacts with the carcinoembryonic antigen. Proc. Natl. Acad. Sci. U. S. A. 69 (9), 2492–2494.CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Mach J.P., Buchegger F., Forni M., et al. 1981. Use of radiolabelled monoclonal anti-CEA antibodies for the detection of human carcinomas by external photoscanning and tomoscintigraphy. Immunol. Today. 2 (12), 239–249.CrossRefPubMedGoogle Scholar
  8. 8.
    Hammarstrom S., Shively J.E., Paxton R.J., et al. 1989. Antigenic sites in carcinoembryonic antigen. Cancer Res. 49 (17), 4852–4858.PubMedGoogle Scholar
  9. 9.
    Delaloye B., Bischof-Delaloye A., Buchegger F., et al. 1986. Detection of colorectal carcinoma by emissioncomputerized tomography after injection of 123I-labeled Fab or F(ab')2 fragments from monoclonal anti-carcinoembryonic antigen antibodies. J. Clin. Invest. 77 (1), 301–311.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bischof-Delaloye A., Delaloye B., Buchegger F., et al. 1989. Clinical value of immunoscintigraphy in colorectal carcinoma patients: A prospective study. J. Nucl. Med. 30 (10), 1646–1656.PubMedGoogle Scholar
  11. 11.
    Moffat F.L., Jr., Pinsky C.M., Hammershaimb L., et al. 1996. Clinical utility of external immunoscintigraphy with the IMMU-4 technetium-99m Fab' antibody fragment in patients undergoing surgery for carcinoma of the colon and rectum: Results of a pivotal, phase III trial. The Immunomedics Study Group. J. Clin. Oncol. 14 (8), 2295–2305.CrossRefPubMedGoogle Scholar
  12. 12.
    Mach J.P., Chatal J.F., Lumbroso J.D., et al. 1983. Tumor localization in patients by radiolabeled monoclonal antibodies against colon carcinoma. Cancer Res. 43 (11), 5593–5600.PubMedGoogle Scholar
  13. 13.
    Schmidt M., Ruttinger D., Sebastian M., et al. 2012. Phase IB study of the EpCAM antibody adecatumumab combined with docetaxel in patients with EpCAM-positive relapsed or refractory advanced-stage breast cancer. Ann. Oncol. 23 (9), 2306–2313.CrossRefPubMedGoogle Scholar
  14. 14.
    Buchegger F., Pfister C., Fournier K., et al. 1989. Ablation of human colon carcinoma in nude mice by 131I-labeled monoclonal anti-carcinoembryonic antigen antibody F(ab')2 fragments. J. Clin. Invest. 83 (5), 1449–1456.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Liersch T., Meller J., Kulle B., et al. 2005. Phase II trial of carcinoembryonic antigen radioimmunotherapy with 131I-labetuzumab after salvage resection of colorectal metastases in the liver: Five-year safety and efficacy results. J. Clin. Oncol. 23 (27), 6763–6770.CrossRefPubMedGoogle Scholar
  16. 16.
    Ychou M., Azria D., Menkarios C., et al. 2008. Adjuvant radioimmunotherapy trial with iodine-131-labeled anti-carcinoembryonic antigen monoclonal antibody F6 F(ab')2 after resection of liver metastases from colorectal cancer. Clin. Cancer Res. 14 (11), 3487–3493.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kraeber-Bodere F., Rousseau C., Bodet-Milin C., et al. 2006. Targeting, toxicity, and efficacy of 2-step, pretargeted radioimmunotherapy using a chimeric bispecific antibody and 131I-labeled bivalent hapten in a phase I optimization clinical trial. J. Nucl. Med. 47 (2), 247–255.PubMedGoogle Scholar
  18. 18.
    Breitz H.B., Weiden P.L., Vanderheyden J.L., et al. 1992. Clinical experience with rhenium-186-labeled monoclonal antibodies for radioimmunotherapy: Results of phase I trials. J. Nucl. Med. 33 (6), 1099–1109.PubMedGoogle Scholar
  19. 19.
    DeNardo S.J., Kroger L.A., DeNardo G.L. 1999. A new era for radiolabeled antibodies in cancer? Curr. Opin. Immunol. 11 (5), 563–569.CrossRefPubMedGoogle Scholar
  20. 20.
    Kraeber-Bodere F., Rousseau C., Bodet-Milin C., et al. 2015. Tumor immunotargeting using innovative radionuclides. Int. J. Mol. Sci. 16 (2), 3932–3954.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Press O.W., Eary J.F., Appelbaum F.R., et al. 1995. Phase II trial of 131I-B1 (anti-CD20) antibody therapy with autologous stem cell transplantation for relapsed B cell lymphomas. Lancet. 346 (8971), 336–340.CrossRefPubMedGoogle Scholar
  22. 22.
    Kaminski M.S., Estes J., Zasadny K.R., et al. 2000. Radioimmunotherapy with iodine 131I tositumomab for relapsed or refractory B-cell non-Hodgkin lymphoma: Updated results and long-term follow-up of the University of Michigan experience. Blood. 96 (4), 1259–1266.PubMedGoogle Scholar
  23. 23.
    Buchegger F., Antonescu C., Delaloye A.B., et al. 2006. Long-term complete responses after 131I-tositumomab therapy for relapsed or refractory indolent non-Hodgkin’s lymphoma. Br. J. Cancer. 94 (12), 1770–1776.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Buchegger F., Mach J.P., Press O.W., et al. 2013. Improving the chance of cure of follicular lymphoma by combining immunotherapy and radioimmunotherapy based on anti-CD20 antibodies? Ann. Oncol. 24 (7), 1948–1949.CrossRefPubMedGoogle Scholar
  25. 25.
    Pelegrin A., Folli S., Buchegger F., et al. 1991. Antibody- fluorescein conjugates for photoimmunodiagnosis of human colon carcinoma in nude mice. Cancer. 67 (10), 2529–2537.CrossRefPubMedGoogle Scholar
  26. 26.
    Folli S., Wagnieres G., Pelegrin A., et al. 1992. Immunophotodiagnosis of colon carcinomas in patients injected with fluoresceinated chimeric antibodies against carcinoembryonic antigen. Proc. Natl. Acad. Sci. U. S. A. 89 (17), 7973–7977.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mach J.-P. 2002. Targeting of monoclonal antibodies for imaging and potential for therapy. In: Encyclopedia of Life Sciences, London: Nature Publ. Group, pp. 1–13.Google Scholar
  28. 28.
    Birchler M., Neri G., Tarli L., et al. 1999. Infrared photodetection for the in vivo localisation of phage-derived antibodies directed against angiogenic markers. J. Immunol. Methods. 231 (1–2), 239–248.CrossRefPubMedGoogle Scholar
  29. 29.
    Li C., Wang J., Hu J., et al. 2014. Development, optimization, and validation of novel anti-TEM1/CD248 affinity agent for optical imaging in cancer. Oncotarget. 5 (16), 6994–7012.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Gutowski M., Framery B., Boonstra M.C., et al. 2017. SGM-101: An innovative near-infrared dye-antibody conjugate that targets CEA for fluorescence-guided surgery. Surg. Oncol. 26 (2), 153–162.CrossRefPubMedGoogle Scholar
  31. 31.
    Maloney D.G., Grillo-Lopez A.J., Bodkin D.J., et al. 1997. IDEC-C2B8: Results of a phase I multiple-dose trial in patients with relapsed non-Hodgkin’s lymphoma. J. Clin. Oncol. 15 (10), 3266–3274.CrossRefPubMedGoogle Scholar
  32. 32.
    Radford J., Davies A., Cartron G., et al. 2013. Obinutuzumab (GA101) plus CHOP or FC in relapsed/ refractory follicular lymphoma: Results of the GAUDI study (BO21000). Blood. 122 (7), 1137–1143.CrossRefPubMedGoogle Scholar
  33. 33.
    Slamon D.J., Leyland-Jones B., Shak S., et al. 2001. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344 (11), 783–792.CrossRefPubMedGoogle Scholar
  34. 34.
    Romond E.H., Perez E.A., Bryant J., et al. 2005. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 353 (16), 1673–1684.CrossRefPubMedGoogle Scholar
  35. 35.
    Baselga J., Pfister D., Cooper M.R., et al. 2000. Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J. Clin. Oncol. 18 (4), 904–914.CrossRefPubMedGoogle Scholar
  36. 36.
    Vanhoefer U., Tewes M., Rojo F., et al. 2004. Phase I study of the humanized antiepidermal growth factor receptor monoclonal antibody EMD72000 in patients with advanced solid tumors that express the epidermal growth factor receptor. J. Clin. Oncol. 22 (1), 175–184.CrossRefPubMedGoogle Scholar
  37. 37.
    Douillard J.Y., Oliner K.S., Siena S., et al. 2013. Panitumumab- FOLFOX4 treatment and RAS mutations in colorectal cancer. N. Engl. J. Med. 369 (11), 1023–1034.CrossRefPubMedGoogle Scholar
  38. 38.
    Hurwitz H., Fehrenbacher L., Novotny W., et al. 2004. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350 (23), 2335–2342.CrossRefPubMedGoogle Scholar
  39. 39.
    Tappenden P., Jones R., Paisley S., et al. 2007. Systematic review and economic evaluation of bevacizumab and cetuximab for the treatment of metastatic colorectal cancer. Health. Technol. Assess. 11 (12), 1–128, iii-iv.CrossRefPubMedGoogle Scholar
  40. 40.
    Larbouret C., Robert B., Bascoul-Mollevi C., et al. 2010. Combined cetuximab and trastuzumab are superior to gemcitabine in the treatment of human pancreatic carcinoma xenografts. Ann. Oncol. 21 (1), 98–103.CrossRefPubMedGoogle Scholar
  41. 41.
    Assenat E., Azria D., Mollevi C., et al. 2015. Dual targeting of HER1/EGFR and HER2 with cetuximab and trastuzumab in patients with metastatic pancreatic cancer after gemcitabine failure: Results of the “THERAPY” phase 1-2 trial. Oncotarget. 6 (14), 12796–12808.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ben-Kasus T., Schechter B., Lavi S., et al. 2009. Persistent elimination of ErbB-2/HER2-overexpressing tumors using combinations of monoclonal antibodies: Relevance of receptor endocytosis. Proc. Natl. Acad. Sci. U. S. A. 106 (9), 3294–3299.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Urruticoechea A., Rizwanullah M., Im S.A., et al. 2017. Randomized phase III trial of trastuzumab plus capecitabine with or without pertuzumab in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer who experienced disease progression during or after trastuzumab-based therapy. J. Clin. Oncol. JCO2016706267. doi 10.1200/JCO.2016.70.6267Google Scholar
  44. 44.
    Eberl G., Jiang S., Yu Z., et al. 1998. An anti-CD19 antibody coupled to a tetanus toxin peptide induces efficient Fas ligand (FasL)-mediated cytotoxicity of a transformed human B cell line by specific CD4+ T cells. Clin. Exp. Immunol. 114 (2), 173–178.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Robert B., Guillaume P., Luescher I., et al. 2001. Redirecting anti-viral CTL against cancer cells by surface targeting of monomeric MHC class I-viral peptide conjugated to antibody fragments. Cancer Immun. 1, 2.PubMedGoogle Scholar
  46. 46.
    Donda A., Cesson V., Mach J.P., et al. 2003. In vivo targeting of an anti-tumor antibody coupled to antigenic MHC class I complexes induces specific growth inhibition and regression of established syngeneic tumor grafts. Cancer Immun. 3, 11.PubMedGoogle Scholar
  47. 47.
    Cesson V., Stirnemann K., Robert B., et al. 2006. Active antiviral T-lymphocyte response can be redirected against tumor cells by antitumor antibody × MHC/viral peptide conjugates. Clin. Cancer Res. 12 (24), 7422–7430.CrossRefPubMedGoogle Scholar
  48. 48.
    Lev A., Noy R., Oved K., et al. 2004. Tumor-specific Ab-mediated targeting of MHC-peptide complexes induces regression of human tumor xenografts in vivo. Proc. Natl. Acad. Sci. U. S. A. 101 (24), 9051–9056.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Schmittnaegel M., Levitsky V., Hoffmann E., et al. 2015. Committing cytomegalovirus-specific CD8 t cells to eliminate tumor cells by bifunctional major histocompatibility class I antibody fusion molecules. Cancer Immunol. Res. 3 (7), 764–776.CrossRefPubMedGoogle Scholar
  50. 50.
    Stirnemann K., Romero J.F., Baldi L., et al. 2008. Sustained activation and tumor targeting of NKT cells using a CD1d-anti-HER2-scFv fusion protein induce antitumor effects in mice. J. Clin. Invest. 118 (3), 994–1005.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Staerz U.D., Kanagawa O., Bevan M.J. 1985. Hybrid antibodies can target sites for attack by T cells. Nature. 314 (6012), 628–631.CrossRefPubMedGoogle Scholar
  52. 52.
    Perez P., Hoffman R.W., Shaw S., et al. 1985. Specific targeting of cytotoxic T cells by anti-T3 linked to antitarget cell antibody. Nature. 316 (6026), 354–356.CrossRefPubMedGoogle Scholar
  53. 53.
    Barr I.G., Miescher S., von Fliedner V., et al. 1989. In vivo localization of a bispecific antibody which targets human T lymphocytes to lyse human colon cancer cells. Int. J. Cancer. 43 (3), 501–507.CrossRefPubMedGoogle Scholar
  54. 54.
    Mack M., Riethmuller G., Kufer P. 1995. A small bispecific antibody construct expressed as a functional single-chain molecule with high tumor cell cytotoxicity. Proc. Natl. Acad. Sci. U. S. A. 92 (15), 7021–7025.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Bargou R., Leo E., Zugmaier G., et al. 2008. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science. 321 (5891), 974–977.CrossRefPubMedGoogle Scholar
  56. 56.
    Topp M.S., Gokbuget N., Stein A.S., et al. 2015. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: A multicentre, single-arm, phase 2 study. Lancet Oncol. 16 (1), 57–66.CrossRefPubMedGoogle Scholar
  57. 57.
    Goebeler M.E., Knop S., Viardot A., et al. 2016. Bispecific T-cell engager (BiTE) antibody construct blinatumomab for the treatment of patients with relapsed/refractory non-Hodgkin lymphoma: Final results from a phase I study. J. Clin. Oncol. 34 (10), 1104–1111.CrossRefPubMedGoogle Scholar
  58. 58.
    Braig F., Brandt A., Goebeler M., et al. 2017. Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood. 129 (1), 100–104.CrossRefPubMedGoogle Scholar
  59. 59.
    Eshhar Z., Waks T., Gross G., et al. 1993. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl. Acad. Sci. U. S. A. 90 (2), 720–724.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Maude S.L., Teachey D.T., Porter D.L., et al. 2015. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood. 125 (26), 4017–4023.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Fiedler W., Wolf M., Kebenko M., et al. 2012. Phase I study of EpCAM/CD3-bispecific antibody (MT110) in patients with advanced solid tumors. J. Clin. Oncol. 30 (Suppl. 15), 2504.Google Scholar
  62. 62.
    De Vries E., Heinemann V., Fiedler W.M., et al. 2015. Phase I study of AMG 211/MEDI-565 administered as continuous intravenous infusion for relapsed/refractory gastrointestinal (GI) adenocarcinoma. J. Clin. Oncol. 33, TPS 3097.CrossRefGoogle Scholar
  63. 63.
    Friedrich M., Raum T., Lutterbuese R., et al. 2012. Regression of human prostate cancer xenografts in mice by AMG 212/BAY2010112, a novel PSMA/CD3- bispecific BiTE antibody cross-reactive with nonhuman primate antigens. Mol. Cancer Ther. 11 (12), 2664–2673.CrossRefPubMedGoogle Scholar
  64. 64.
    Golay J., Choblet S., Iwaszkiewicz J., et al. 2016. Design and validation of a novel generic platform for the production of tetravalent IgG1-like bispecific antibodies. J. Immunol. 196 (7), 3199–3211.CrossRefPubMedGoogle Scholar
  65. 65.
    Leach D.R., Krummel M.F., Allison J.P. 1996. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 271 (5256), 1734–1736.CrossRefPubMedGoogle Scholar
  66. 66.
    Hodi F.S., O’Day S.J., McDermott D.F., et al. 2010. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363 (8), 711–723.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    van Rooij N., van Buuren M.M., Philips D., et al. 2013. Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J. Clin. Oncol. 31 (32), e439–e442.CrossRefPubMedGoogle Scholar
  68. 68.
    Parry R.V., Chemnitz J.M., Frauwirth K.A., et al. 2005. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell Biol. 25 (21), 9543–9553.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Topalian S.L., Drake C.G., Pardoll D.M. 2015. Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell. 27 (4), 450–461.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Topalian S.L., Hodi F.S., Brahmer J.R., et al. 2012. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366 (26), 2443–2454.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Le D.T., Uram J.N., Wang H., et al. 2015. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372 (26), 2509–2520.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Brahmer J.R., Tykodi S.S., Chow L.Q., et al. 2012. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366 (26), 2455–2465.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Hodi F.S., Chesney J., Pavlick A.C., et al. 2016. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 17 (11), 1558–1568.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Abelev G.I., Perova S.D., Khramkova N.I., et al. 1963. Production of embryonal alpha-globulin by transplantable mouse hepatomas. Transplantation. 1, 174–180.CrossRefPubMedGoogle Scholar
  75. 75.
    Engelhardt N., Mach J.P. 2014. In memory of Garry Abelev, 1928–2013. Tumour Biol. 35 (7), 6169–6173.CrossRefPubMedGoogle Scholar
  76. 76.
    Efimov G.A., Kruglov A.A., Khlopchatnikova Z.V., et al. 2016. Cell-type-restricted anti-cytokine therapy: TNF inhibition from one pathogenic source. Proc. Natl. Acad. Sci. U. S. A. 113 (11), 3006–3011.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Terskikh A., Couty S., Pelegrin A., et al. 1994. Dimeric recombinant IgA directed against carcino-embryonic antigen, a novel tool for carcinoma localization. Mol. Immunol. 31 (17), 1313–1319.CrossRefPubMedGoogle Scholar
  78. 78.
    Terskikh A.V., Le Doussal J.M., Crameri R., et al. 1997. “Peptabody”: A new type of high avidity binding protein. Proc. Natl. Acad. Sci. U. S. A. 94 (5), 1663–1668.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Department of BiochemistryLausanne University 155 Chemin des Boveresses CHEpalingesSwitzerland

Personalised recommendations