Molecular Biology

, Volume 51, Issue 6, pp 782–787 | Cite as

Next-Generation Techniques for Discovering Human Monoclonal Antibodies

  • A. A. Lushova
  • M. G. Biazrova
  • A. G. Prilipov
  • G. K. Sadykova
  • T. A. Kopylov
  • A. V. Filatov
Current Trends in the Application of Monoclonal Antibodies Special Issue


Monoclonal antibodies have found wide applications in the treatment of cancer, as well as of autoimmune, infectious, and other diseases. Several dozen new antibodies are currently undergoing different stages of clinical trials, and some of them will soon be added to the list of immunotherapeutic drugs. Most of these antibodies have been generated using hybridoma technology or a phage display. In recent years, new methods of obtaining human monoclonal antibodies have been actively developing. These methods rely on sequencing immunoglobulin genes from B lymphocytes, as well as on the creation of antibody-secreting stable B-cell lines. The term next-generation antibody-discovery platforms has already been established in the literature to refer to these approaches. Our review focuses on describing the results obtained by these methods.


human monoclonal antibodies next-generation sequencing B-cell immortalization immunoglobulins 



enzyme-linked immunospot


next-generation sequencing


variable domain of the heavy chain


variable domain of the light chain


monoclonal antibody


severe acute respiratory syndrome.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Köhler G., Milstein C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 256, 495–497.CrossRefPubMedGoogle Scholar
  2. 2.
    Green L.L. 1999. Antibody engineering via genetic engineering of the mouse: XenoMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. J. Immunol. Methods. 231, 11–23.CrossRefPubMedGoogle Scholar
  3. 3.
    Frenzel A., Schirrmann T., Hust M. 2016. Phage display-derived human antibodies in clinical development and therapy. MAbs. 8, 1177–11194.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chiu H.Y., Wang T.S., Chan C.C., et al. 2015. Risk factor analysis for the immunogenicity of adalimumab associated with decreased clinical response in Chinese patients with psoriasis. Acta Dermatol. Venereol. 95, 711–716.CrossRefGoogle Scholar
  5. 5.
    van Schouwenburg P.A., Rispens T., Wolbink G.J. 2013. Immunogenicity of anti-TNF biologic therapies for rheumatoid arthritis. Nat. Rev. Rheumatol. 9, 164–172.CrossRefPubMedGoogle Scholar
  6. 6.
    Hardiman G. 2012. Next-generation antibody discovery platforms. Proc. Natl. Acad. Sci. U. S. A. 109, 18245–18246.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lavinder J.J., Horton A.P., Georgiou G., et al. 2015. Next-generation sequencing and protein mass spectrometry for the comprehensive analysis of human cellular and serum antibody repertoires. Curr. Opin. Chem. Biol. 24, 112–120.CrossRefPubMedGoogle Scholar
  8. 8.
    Galson J.D., Pollard A.J., Truck J., et al. 2014. Studying the antibody repertoire after vaccination: Practical applications. Trends Immunol. 35, 319–331.CrossRefPubMedGoogle Scholar
  9. 9.
    Reddy S.T., Ge X., Miklos A.E., et al. 2010. Monoclonal antibodies isolated without screening by analyzing the variable-gene repertoire of plasma cells. Nat. Biotechnol. 28, 965–969.CrossRefPubMedGoogle Scholar
  10. 10.
    Lees W.D., Shepherd A.J. 2015. Utilities for highthroughput analysis of B-cell clonal lneages. J. Immunol. Res. 2015, 323–506.CrossRefGoogle Scholar
  11. 11.
    Lebedin M.Y., Turchaninova M.A., Egorov E.S., et al. 2017. High-throughput immunoglobulin sequencing data analysis with the use of unique molecular identifiers. Immunologiya. 38, 59–63.Google Scholar
  12. 12.
    Turchaninova M.A., Davydov A., Britanova O.V., et al. 2016. High-quality full-length immunoglobulin profiling with unique molecular barcoding. Nat. Protoc. 11, 1599–1616.CrossRefPubMedGoogle Scholar
  13. 13.
    Lu D.R., Tan Y.C., Kongpachith S., et al. 2014. Identifying functional anti-Staphylococcus aureus antibodies by sequencing antibody repertoires of patient plasmablasts. Clin. Immunol. 152, 77–89.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wu X., Zhou T., Zhu J., Zhang B., et al. 2011. Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science. 333, 1593–1602.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wardemann H., Yurasov S., Schaefer A., et al. 2003. Predominant autoantibody production by early human B cell precursors. Science. 301, 1374–1377.CrossRefPubMedGoogle Scholar
  16. 16.
    Clargo A.M., Hudson A.R., Ndlovu W., et al. 2014. The rapid generation of recombinant functional monoclonal antibodies from individual, antigen-specific bone marrow-derived plasma cells isolated using a novel fluorescence-based method. MAbs. 6, 143–159.CrossRefPubMedGoogle Scholar
  17. 17.
    Corti D., Voss J., Gamblin S.J., Codoni G., et al. 2011. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science. 333, 850–856.CrossRefPubMedGoogle Scholar
  18. 18.
    Yu X., Tsibane T., McGraw P.A., House F.S., et al. 2008. Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature. 455, 532–536.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Traggiai E., Becker S., Subbarao K., Kolesnikova L., et al. 2004. An efficient method to make human monoclonal antibodies from memory B cells: Potent neutralization of SARS coronavirus. Nat. Med. 10, 871–875.CrossRefPubMedGoogle Scholar
  20. 20.
    Scheid J.F., Mouquet H., Feldhahn N., et al. 2009. Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature. 458, 636–640.CrossRefPubMedGoogle Scholar
  21. 21.
    Wrammert J., Smith K., Miller J., et al. 2008. Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature. 453, 667–671.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Smith K., Garman L., Wrammert J., et al. 2009. Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen. Nat. Protoc. 4, 372–384.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tiller T., Meffre E., Yurasov S., et al. 2008. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J. Immunol. Methods. 329, 112–124.CrossRefPubMedGoogle Scholar
  24. 24.
    Liao H.X., Levesque M.C., Nagel A., et al. 2009. Highthroughput isolation of immunoglobulin genes from single human B cells and expression as monoclonal antibodies. J. Virol. Methods. 158, 171–179.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lin Z., Chiang N.Y., Chai N., et al. 2014. In vivo antigen-driven plasmablast enrichment in combination with antigen-specific cell sorting to facilitate the isolation of rare monoclonal antibodies from human B cells. Nat. Protoc. 9, 1563–1577.CrossRefPubMedGoogle Scholar
  26. 26.
    Nakamura G., Chai N., Park S., et al. 2013. An in vivo human-plasmablast enrichment technique allows rapid identification of therapeutic influenza A antibodies. Cell Host Microbe. 14, 93–103.CrossRefPubMedGoogle Scholar
  27. 27.
    Tan Y.C., Blum L.K., Kongpachith S., et al. 2014. High-throughput sequencing of natively paired antibody chains provides evidence for original antigenic sin shaping the antibody response to influenza vaccination. Clin. Immunol. 151, 55–65.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    DeKosky B.J., Ippolito G.C., Deschner R.P., et al. 2013. High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire. Nat. Biotechnol. 31, 166–169.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wine Y., Boutz D.R., Lavinder J.J., et al. 2013. Molecular deconvolution of the monoclonal antibodies that comprise the polyclonal serum response. Proc. Natl. Acad. Sci. U. S. A. 110, 2993–2998.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Cheung W.C., Beausoleil S.A., Zhang X., et al. 2012. A proteomics approach for the identification and cloning of monoclonal antibodies from serum. Nat. Biotechnol. 30, 447–452.CrossRefPubMedGoogle Scholar
  31. 31.
    Aman P., Ehlin-Henriksson B., Klein G. 1984. Epstein–Barr virus susceptibility of normal human B lymphocyte populations. J. Exp. Med. 159, 208–220.CrossRefPubMedGoogle Scholar
  32. 32.
    Crain M.J., Sanders S.K., Butler J.L., et al. 1989. Epstein–Barr virus preferentially induces proliferation of primed B cells. J. Immunol. 143, 1543–1548.PubMedGoogle Scholar
  33. 33.
    Laffly E., Sodoyer R. 2005. Monoclonal and recombinant antibodies, 30 years after. Hum. Antibodies. 14, 33–55.PubMedGoogle Scholar
  34. 34.
    Stahli C., Staehelin T., Miggiano V., et al. 1980. High frequencies of antigen-specific hybridomas: Dependence on immunization parameters and prediction by spleen cell analysis. J. Immunol. Methods. 32, 297–304.CrossRefPubMedGoogle Scholar
  35. 35.
    Banchereau J., Bazan F., Blanchard D., et al. 1994. The CD40 antigen and its ligand. Annu. Rev. Immunol. 12, 881–922.CrossRefPubMedGoogle Scholar
  36. 36.
    Banchereau J., Rousset F. 1991. Growing human B lymphocytes in the CD40 system. Nature. 353, 678–679.CrossRefPubMedGoogle Scholar
  37. 37.
    O’Nions J., Allday M.J. 2004. Proliferation and differentiation in isogenic populations of peripheral B cells activated by Epstein–Barr virus or T cell-derived mitogens. J. Gen. Virol. 85, 881–895.CrossRefPubMedGoogle Scholar
  38. 38.
    Wiesner M., Zentz C., Mayr C., et al. 2008. Conditional immortalization of human B cells by CD40 ligation. PLoS ONE. 3, e1464.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kwakkenbos M.J., Diehl S.A., Yasuda E., et al. 2010. Generation of stable monoclonal antibody-producing B cell receptor-positive human memory B cells by genetic programming. Nat. Med. 16, 123–128.CrossRefPubMedGoogle Scholar
  40. 40.
    Kwakkenbos M.J., van Helden P.M., Beaumont T., et al. 2016. Stable long-term cultures of self-renewing B cells and their applications. Immunol. Rev. 270, 65–77.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kwakkenbos M.J., Bakker A.Q., van Helden P.M., et al. 2014. Genetic manipulation of B cells for the isolation of rare therapeutic antibodies from the human repertoire. Methods. 65, 38–43.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • A. A. Lushova
    • 1
  • M. G. Biazrova
    • 1
  • A. G. Prilipov
    • 2
  • G. K. Sadykova
    • 2
  • T. A. Kopylov
    • 3
  • A. V. Filatov
    • 1
  1. 1.Institute of ImmunologyFederal Medical-Biological Agency of RussiaMoscowRussia
  2. 2.Ivanovsky Institute of Virology, Gamaleya Scientific Research Institute of Epidemiology and MicrobiologyMinistry of Health of the Russian FederationMoscowRussia
  3. 3.Orekhovich Institute of Biomedical ChemistryMoscowRussia

Personalised recommendations