Molecular Biology

, Volume 51, Issue 6, pp 921–926 | Cite as

Humanization of Murine Monoclonal anti-hTNF Antibody: The F10 Story

  • G. A. Efimov
  • J. M. H. Raats
  • R. G. S. Chirivi
  • J. W. G. van Rosmalen
  • S. A. Nedospasov
Current Trends in the Application of Monoclonal Antibodies Special Issue


Tumor necrosis factor (TNF) is a proinflammatory cytokine implicated in pathogenesis of multiple autoimmune and inflammatory diseases. Anti-TNF therapy has revolutionized the therapeutic paradigms of autoimmune diseases and became one of the most successful examples of the clinical use of monoclonal antibodies. Currently, anti-TNF therapy is used by millions of patients worldwide. At the moment, fully human anti-TNF antibody Adalimumab is the best-selling anti-cytokine drug in the world. Here, we present a story about a highly potent anti-TNF monoclonal antibody initially characterized more than 20 years ago and further developed into chimeric and humanized versions. We present comparative analysis of this antibody with Infliximab and Adalimumab.


TNF tumor necrosis factor recombinant antibodies humanized antibodies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Köhler G., Milstein C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 256, 495–497.PubMedCrossRefGoogle Scholar
  2. 2. patents.Google Scholar
  3. 3.
    Auerbach R., Alby L., Morrissey L.W., et al. 1985. Expression of organ-specific antigens on capillary endothelial cells. Microvasc. Res. 29, 401–411.PubMedCrossRefGoogle Scholar
  4. 4.
    Allikmets E.Y., Danilov S.M. 1986. Mitogen-induced disorganization of capillary-like structures formed by human large vessel endothelial cells in vitro. Tissue Cell. 18, 481–489.PubMedCrossRefGoogle Scholar
  5. 5.
    Sturrock E.D., Anthony C.S., Danilov S.M. 2012. Peptidyl- dipeptidase A/angiotensin I-converting enzyme. In: Handbook of Proteolytic Enzymes, 3rd ed. Eds. Rawlings N.D., Salvesen G. Oxford: Academic Press, pp. 480–494.Google Scholar
  6. 6.
    Bernstein K.E., Ong F.S., Blackwell W.L., et al. 2013. A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol. Rev. 65, 1–46.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Danilov S.M., Franke F.E., Erdos E.G. 1997. Angiotensin- converting enzyme (CD143). In: Leucocyte Typing VI: White Cell Differentiation Antigens. Eds. Kishimoto T. New York: Garland, pp. 746–749.Google Scholar
  8. 8.
    Dzau V.J., Bernstein K., Celermajer D., et al. 2001. The relevance of tissue angiotensin-converting enzyme: Manifestations in mechanistic and endpoint data. Am. J. Cardiol. 88, 1L–20L.PubMedCrossRefGoogle Scholar
  9. 9.
    Metzger R., Franke F.F., Bohle R.-M., et al. 2011. Heterogeneous distribution of angiotensin I-converting enzyme (CD143) in the human and rat vascular systems: Vessels, organs and species specificity. Microvasc. Res. 82, 206–215.CrossRefGoogle Scholar
  10. 10.
    Silverstein E., Friedland J., Setton C. 1978. Angiotensin- converting enzyme in macrophages and Freund’s adjuvant granuloma. Isr. J. Med. Sci. 14, 314–318.PubMedGoogle Scholar
  11. 11.
    Danilov S.M., Sadovnikova E., Scharenbourg N., et al. 2003. Angiotensin-converting enzyme (CD143) is abundantly expressed by dendritic cells and discriminates human monocytes-derived dendritic cells from acute myeloid leukemia-derived dendritic cells. Exp. Hem. 31, 1301–1309.CrossRefGoogle Scholar
  12. 12.
    Parkin E.T., Turner A.J., Hooper N.M. 2004. Secretase- mediated cell surface shedding of the angiotensinconverting enzyme. Protein Pept. Lett. 11, 423–432.PubMedCrossRefGoogle Scholar
  13. 13.
    Alhenc-Gelas F., Richard J., Courbon D., et al. 1991. Distribution of plasma angiotensin I-converting enzyme levels in healthy men: Relationship to environmental and hormonal parameters. J. Lab. Clin. Med. 117, 33–39.PubMedGoogle Scholar
  14. 14.
    Lieberman J. 1975. Elevation of serum angiotensinconverting enzyme level in sarcoidosis. Am. J. Med. 59, 365–372.PubMedCrossRefGoogle Scholar
  15. 15.
    Lieberman J., Beutler E. 1976. Elevation of angiotensin- converting enzyme in Gaucher’s disease. N. Engl. J. Med. 294, 1442–1444.PubMedCrossRefGoogle Scholar
  16. 16.
    Silverstein E., Friedland J. 1977. Elevated serum and spleen angiotensin converting enzyme and serum lysozyme in Gaucher’s disease. Clin. Chim. Acta. 74, 21–25.PubMedCrossRefGoogle Scholar
  17. 17.
    Rigat B., Hubert C., Alhenc-Gelas F., et al. 1990. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Invest. 86, 1343–1346.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Danilov S.M., Savoie F., Lenoir B., et al. 1996. Development of enzyme-linked immunoassays for human angiotensin I-converting enzyme suitable for largescale studies. J. Hypertens. 14, 719–727.PubMedCrossRefGoogle Scholar
  19. 19.
    Gribouval O., Gonzales M., Neuhaus T. 2005. Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat. Genet. 37, 964–968.PubMedCrossRefGoogle Scholar
  20. 20.
    Kramers C., Danilov S.M., Deinum J., et al. 2001. A point mutation in the stalk of angiotensin-converting enzyme causes a dramatic increase in serum ACE, but no cardiovascular disease. Circulation. 104, 1236–1240.PubMedCrossRefGoogle Scholar
  21. 21.
    Danilov S.M., Gordon K., Nesterovitch A.B., et al. 2011. Angiotensin I-converting enzyme mutation (Y465D) causes dramatic increase in blood ACE via accelerated ACE shedding due to changes of ACE dimerization. PLoS ONE. 6, e25952.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Nesterovitch A.B., Hogarth K.D., Adarichev V.A., et al. 2009. Point mutation of angiotensin I-converting enzyme (Trp1197Stop) determines a dramatic increase in blood ACE. PLoS ONE. 4, e8282.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Persu A., Lambert M., Deinum J., et al. 2013. A novel splice-site mutation in angiotensin I-converting enzyme (ACE) gene, c.3691+1G>A (IVS25+1G>A), causes a dramatic increase in circulating ACE through deletion of the transmembrane anchor. PLoS ONE. 8, e59537.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Soubrier F., Alhenc-Gelas F., Hubert C., et al. 1988. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc. Natl. Acad. Sci. U. S. A. 85, 9386–9390.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Chen H.-L., Lunsdorf H., Hecht H.-J., Tsai H. 2010. Porcine pulmonary angiotensin I-converting enzyme: Biochemical characterization and spatial arrangement of the N- and C-domains by three-dimensional electron- microscopic reconstruction. Micron. 41, 674–685.PubMedCrossRefGoogle Scholar
  26. 26.
    Menard J., Patchett A.A. 2001. Angiotensin-converting enzyme inhibitors. Adv. Protein Chem. 56, 13–75.PubMedCrossRefGoogle Scholar
  27. 27.
    Sakharov I.Y., Dukhanina E.A, Danilov S.M. 1986. Isolation and properties of the angiotensin-converting enzyme from human lungs. Biokhimiya. 51, 946–951.Google Scholar
  28. 28.
    Sakharov I.Y., Danilov S.M., Dukhanina E.A. 1987. Affinity chromatography and some properties of the angiotensin-converting enzyme from human heart. Biochim. Biophys. Acta. 923, 143–149.PubMedCrossRefGoogle Scholar
  29. 29.
    Sakharov I.Y., Danilov S.M., Sukhova N. 1987. Isolation of human liver angiotensin-converting enzyme by chromatofocusing. Analyt. Biochem. 116, 14–17.CrossRefGoogle Scholar
  30. 30.
    Danilov S.M., Jaspard E., Churakova T., et al. 1994. Structure-function analysis of angiotensin-converting enzyme using monoclonal antibodies. Selective inhibition of N-domain active center. J. Biol. Chem. 269, 26806–26814.PubMedGoogle Scholar
  31. 31.
    Tzartos S.J. 1988. Myastenia gravis studied by monoclonal antibodies to acetylcholine receptor. In Vivo. 2, 105–110.PubMedGoogle Scholar
  32. 32.
    Danilov S.M., Allikmets E.Y., Sakharov I.Y., et al. 1987. Monoclonal antibodies to human angiotensin-converting enzyme. Biotech. Appl. Biochem. 9, 319–312.Google Scholar
  33. 33.
    Levinson S.S., Miller J.J. 2002. Towards a better understanding of heterophile (and the like) antibody interference with modern immunoassays. Clin. Chim. Acta Int. J. Clin. Chem. 325, 1–15.CrossRefGoogle Scholar
  34. 34.
    Balyasnikova I.V., Metzger R., Franke F.E., Danilov S.M. 2003. Monoclonal antibodies to denatured human ACE (CD 143): Broad species specificity, reactivity on paraffin sections and detection of subtle conformational changes in the C-terminal domain of ACE. Tissue Antigens. 61, 49–62.PubMedCrossRefGoogle Scholar
  35. 35.
    Balyasnikova I.V., Metzger R., Franke F.E., et al. 2008. Epitope mapping of mAbs to denatured human testicular ACE. Tissue Antigens. 72, 354–368.PubMedCrossRefGoogle Scholar
  36. 36.
    Naperova I.A., Balyasnikova I.V., Schwartz D.E., et al. 2008. Mapping of conformational mAb epitopes to the C domain of human angiotensin I-converting enzyme (ACE). J. Proteome Res. 7, 3396–3411.PubMedCrossRefGoogle Scholar
  37. 37.
    Woodman Z.L., Schwager S.L., Redelinghuys P., et al. 2005. The N domain of somatic angiotensin-converting enzyme negatively regulates ectodomain shedding and catalytic activity. Biochem. J. 389, 739–744.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Balyasnikova I.V., Sun Z-L., Berestetskaya Y.V., et al. 2005a. Monoclonal antibodies 1B3 and 5C8 as probes for monitoring the nativity of C-terminal end of soluble angiotensin-converting enzyme (ACE). Hybridoma. 24, 14–25.PubMedCrossRefGoogle Scholar
  39. 39.
    Balyasnikova I.V., Skirgello O.E., Binevski P.V., et al. 2007. Monoclonal antibodies 1G12 and 6A12 to the N-domain of human angiotensin-converting enzyme: Fine epitope mapping and antibody-based method for revelation and quantification of ACE inhibitors in the human blood. J. Proteome Res. 6, 1580–1594.PubMedCrossRefGoogle Scholar
  40. 40.
    Skirgello O.E., Balyasnikova I.V., Binevski P.V., et al. 2006. Inhibitory antibodies to human angiotensin-converting enzyme: Fine epitope mapping and mechanism of action. Biochemistry. 45, 4831–4847.PubMedCrossRefGoogle Scholar
  41. 41.
    Danilov S.M., Watermeyer J.M., Balyasnikova I.V., et al. 2007. Fine epitope mapping of monoclonal antibody 5F1 reveals anticatalytic activity toward the N domain of human angiotensin-converting enzyme. Biochemistry. 46, 9019–9031.PubMedCrossRefGoogle Scholar
  42. 42.
    Gordon K., Balyasnikova I.V., Nesterovitch A.B., et al. 2010. Fine epitope mapping of monoclonal antibodies 9B9 and 3G8, to the N domain of human angiotensin I-converting enzyme (ACE) defines a region involved in regulating ACE dimerization and shedding. Tissue Antigens. 75, 136–150.PubMedCrossRefGoogle Scholar
  43. 43.
    Balyasnikova I.V., Karran E.H., Albrecht R.FII., Danilov S.M. 2002. Epitope-specific antibody-induced cleavage of angiotensin-converting enzyme from the cell surface. Biochem. J. 362, 585–595.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kost O.A., Balyasnikova I.V., Chemodanova E.E., et al. 2003. Epitope-dependent blocking of the angiotensin- converting enzyme dimerization by monoclonal antibodies to N-terminal domain of ACE: Possible link of ACE dimerization and shedding from the cell surface. Biochemistry. 42, 6965–6976.PubMedCrossRefGoogle Scholar
  45. 45.
    Petrov M.N., Shilo V.Y., Tarasov A.V., et al. 2012. Conformational changes of blood ACE in chronic uremia. PLoS ONE. 7, e49290.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Danilov S.M., Deinum J., Balyasnikova I.V., et al. 2005. Detection of mutated angiotensin-converting enzyme (ACE), by serum/plasma analysis using a pair of monoclonal antibodies. Clin. Chem. 51, 1040–1043.PubMedCrossRefGoogle Scholar
  47. 47.
    Danilov S.M., Kalinin S., Chen Z., et al. 2010. Gln1069Arg angiotensin I-converting enzyme mutation impairs transport to the cell surface resulting in selective denaturation of the C-domain. PLoS ONE. 5, e10438.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Danilov S.M., Wade M.S., Schwager S.L., et al. 2014. A novel angiotensin I-converting enzyme mutation (S333W) impairs N-domain enzymatic cleavage of the anti-fibrotic peptide, Ac-SDKP. PLoS ONE. 9, e88001.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Danilov S.M., Luensdorf H., Nesterovitch A.B., et al. 2016. Lysozyme and bilirubin bind to ACE and regulates ACE conformation and shedding. Sci. Rep. 6, 34913.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Danilov S.M., Balyasnikova I.B., Danilova A.S., et al. 2010. Conformational fingerprinting of the angiotensin- converting enzyme (ACE): Application in sarcoidosis. J. Proteome Res. 9, 5782–5793.PubMedCrossRefGoogle Scholar
  51. 51.
    Balyasnikova I.V., Metzger R., Visintine D., et al. 2005. A new set of monoclonal antibodies to rat angiotensin I-converting enzyme (ACE) for the lung endothelial targeting. Pulm. Pharm. Ther. 18, 251–267.CrossRefGoogle Scholar
  52. 52.
    Balyasnikova I.V., Metzger R., Sun Z.-L., et al. 2005. Development and characterization of rat monoclonal antibodies to denatured mouse angiotensin-converting enzyme. Tissue Antigens. 65, 240–251.PubMedCrossRefGoogle Scholar
  53. 53.
    Balyasnikova I.V., Sun Z.-L., Metzger R., et al. 2006. Monoclonal antibodies to native mouse angiotensinconverting enzyme (CD143): ACE expression quantification, lung endothelial cell targeting and gene delivery. Tissue Antigens. 67, 10–29.PubMedCrossRefGoogle Scholar
  54. 54.
    Nikolaeva M.A., Balyasnikova I.V., Alexinskaya M.A., et al. 2006. Testicular isoform of angiotensin I-converting enzyme (ACE, CD143) on the surface of human spermatozoa: Revelation and quantification using monoclonal antibodies. Am. J. Reprod. Immunol. 55, 54–68.PubMedCrossRefGoogle Scholar
  55. 55.
    Franke F.E., Pauls K., Kerkman L., et al. 2000. Somatic isoform of angiotensin I-converting enzyme in the pathology of testicular germ cell tumors. Human Pathol. 31, 1466–1476.CrossRefGoogle Scholar
  56. 56.
    Essentials in Glycobiology, 2nd ed. 2009. Eds Varki A., Cummings R.D., Esko J.D., Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.Google Scholar
  57. 57.
    Su Y., Royle L., Radcliffe C.M., et al. 2009. Detailed N-glycan analysis of mannose receptor purified from murine spleen indicates tissue specific sialylation. Biochem. Biophys. Res. Commun. 384, 436–443.PubMedCrossRefGoogle Scholar
  58. 58.
    Fishman A. 1963. Dynamics of the pulmonary circulation. in: Handbook of Physiology, vol. 2. Washington, DC: Am. Physiol. Soc., p. 1667.Google Scholar
  59. 59.
    Silverstein E., Friedland J., Lyons H.A., Gourin A. 1976. Elevation of angiotensin-converting enzyme in granulomatous lymph nodes and serum in sarcoidosis: Clinical and possible pathological significance. Ann. N. Y. Acad. Sci. 278, 498–513.PubMedCrossRefGoogle Scholar
  60. 60.
    Kost O.A., Petrov M.N., Naperova I.A., et al. 2016. Conformational fingerprinting of angiotensin-converting enzyme in the blood in health and disease. Moscow Univ. Chem. Bull. 71 (1), 32–36.CrossRefGoogle Scholar
  61. 61.
    Sidransky E. 2012. Gaucher disease: Insights from a rare Mendelian disorder. Discov. Med. 14, 273–281.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Kryukova O.V., Tikhomirova V.E., Golukhova E.Z., et al. 2015. Tissue specificity of human angiotensin I-converting enzyme. PLoS ONE. 10, e0143455.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Liddy K.A., White M.Y., Cordwell S.J. 2013. Functional decorations: Post-translational modifications and heart disease delineated by targeted proteomics. Genome Med. 5, 20.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Falkenhahn M., Franke F., Bohle R.M., et al. 1995. Cellular distribution of angiotensin converting enzyme after myocardial infarction. Hypertension. 25, 219–226.PubMedCrossRefGoogle Scholar
  65. 65.
    Tikhomirova V.E., Kost O.A., Kryukova O.V., et al. 2017. ACE phenotyping in human heart. PLoS ONE. 12 (8), e0181976. doi 10.1371/journal.pone.0181976PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Goette A., Staack T., Rocken C., et al. 2000. Increased expression of extracellular signal-regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation. J. Am. Coll. Cardiol. 35, 1669–1677.PubMedCrossRefGoogle Scholar
  67. 67.
    Xiao H.D., Fuchs S., Campbell D.J., et al. 2004. Mice with cardiac-restricted angiotensin-converting enzyme (ACE) have atrial enlargement, cardiac arrhythmia, and sudden death. Am. J. Pathol. 165, 1019–1032.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Romer F.K. 1984. Clinical and biochemical aspects of sarcoidosis. With special reference to angiotensin-converting enzyme (ACE). Acta Med. Scand. Suppl. 690, 3–96.PubMedGoogle Scholar
  69. 69.
    Hohlbrugger G., Pschorr J., Dahlheim H. 1984. Angiotensin I converting enzyme in the ejaculate of fertile and infertile men. Fertil. Steril. 41, 324–325.PubMedCrossRefGoogle Scholar
  70. 70.
    Ferrara N. 2004. Vascular endothelial growth factor: Basic science and clinical progress. Endocr. Rev. 25, 581–611.PubMedCrossRefGoogle Scholar
  71. 71.
    Grivas N., Goussia A., Stefanou D., Giannakis D. 2016. Microvascular density and immunohistochemical expression of VEGF, VEGFR-1 and VEGFR-2 in benign prostatic hyperplasia, high-grade prostate intraepithelial neoplasia and prostate cancer. Cent. Eur. J. Urol. 69, 63–71.Google Scholar
  72. 72.
    Roberts W.G., Palade G.E. 1995. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J. Cell Sci. 108 (6), 2369–2379.PubMedGoogle Scholar
  73. 73.
    Hiemisch H., Gavrilyuk V., Atochina E., et al. 1993. Purification of radiolabeled monoclonal antibodies to angiotensin-converting enzyme significantly improves specificity and efficacy of its targeting into the lung. Nucl. Med. Biol. 20, 435–441.PubMedCrossRefGoogle Scholar
  74. 74.
    Danilov S.M., Sakharov I.Y., Martynov A.V., et al. 1989. Monoclonal antibody to angiotensin-converting enzyme: A powerful tool for lung and vessel studies. J. Mol. Cell. Cardiol. 21 (Suppl. 1), 165–170.PubMedCrossRefGoogle Scholar
  75. 75.
    Danilov S.M., Muzykantov V.R., Martynov A.V., et al. 1991. Lung is the target organ for a monoclonal antibody to angiotensin-converting enzyme. Lab. Invest. 64, 118–124.PubMedGoogle Scholar
  76. 76.
    Danilov S.M., Gavriljuk V.D., Franke F.E., et al. 2001. Lung uptake of antibodies to endothelial antigens: Key determinants of vascular immunotargeting. Am. J. Physiol. Lung Physiol. 280, L1335–L1347.CrossRefGoogle Scholar
  77. 77.
    Muzykantov V.R. 2005. Biomedical aspects of targeted delivery of drugs to pulmonary endothelium. Expert Opin. Drug Deliv. 5, 909–926.CrossRefGoogle Scholar
  78. 78.
    Chrastina A., Valadon P., Massey K.A., Schnitzer J.E. 2010. Lung vascular targeting using antibody to aminipeptidase P: CT-SPECT imaging, biodistribution and pharmacokinetic analysis. J. Vasc. Res. 47, 531–543.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Somia N., Verma I.M. 2000. Gene therapy: Trials and tribulations. Nat. Rev. Genet. 2, 91–99.CrossRefGoogle Scholar
  80. 80.
    Reynolds P.N., Zinn K.R., Gavrilyuk V.D., et al. 2000. A targetable, injectable adenoviral vector for selective gene delivery to pulmonary endothelium in vivo. Mol. Ther. 2, 562–578.PubMedCrossRefGoogle Scholar
  81. 81.
    Muzykantov V.R., Barnathan E., Atochina E., Fisher A. 1996. Targeting of conjugated plasminogen activators to the pulmonary vasculature. J. Pharm. Exp. Ther. 279, 1026–1034.Google Scholar
  82. 82.
    Muzykantov V.R., Atochina E.N., Ischiropoulos H., et al. 1996. Immunotargeting of antioxidant enzymes to the pulmonary endothelium. Proc. Natl. Acad. Sci. U. S. A. 93, 5213–5218.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Atochina E.N., Balyasnikova I.V., Danilov S.M., et al. 1998. Catalasetargeting to the surface endothelial antigens protects pulmonary vasculature against oxidative insult. Am. J. Physiol. Lung Physiol. 275, L806–L817.CrossRefGoogle Scholar
  84. 84.
    Nowak K., Weih S., Metzger R., et al. 2007. Immunotargeting of catalase to lung endothelium via anti-ACE antibodies attenuates ischemia–reperfusion injury of the lung in vivo. Am. J. Physiol. Lung Physiol. 293, L162–L169.CrossRefGoogle Scholar
  85. 85.
    Nowak K., Hanusch C., Nicksch K., et al. 2010. Preischemic conditioning of the pulmonary endothelium by immunotargeting of catalase via angiotensin-converting enzyme antibodies. Eur. J. Cardiothorac. Surg. 37, 859–863.PubMedCrossRefGoogle Scholar
  86. 86.
    Reynolds P.N., Nicklin S.A., Kaliberova L., et al. 2001. Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo. Nat. Biotechnol. 19, 838–842.PubMedCrossRefGoogle Scholar
  87. 87.
    Miller W.H., Brosnan M.J., Graham D., et al. 2005. Targeting endothelial cells with adenovirus expressing nitric oxide synthase prevent elevation of blood pressure in stroke prone spontaneously hypertensive rats. Mol. Ther. 12, 321–327.PubMedCrossRefGoogle Scholar
  88. 88.
    Reynolds A.M., Xia M., Holmes M.D., et al. 2007. Bone morphogenetic protein type 2 receptor (BMPR2) gene therapy attenuates hypoxic pulmonary hypertension. Am. J. Physiol. Lung Physiol. 292, L1182–L1192.CrossRefGoogle Scholar
  89. 89.
    Reynolds A.M., Holmes M.D., Danilov S.M., Reynolds P.N. et al. 2012. Targeted delivery of bone morpho- genetic protein receptor type-2 attenuates pulmonary hypertension in rats. Eur. Resp. J. 39, 329–343.CrossRefGoogle Scholar
  90. 90.
    Morecroft I., White K., Caruso P., et al. 2012. Gene therapy by targeted adenovirus-mediated knockdown of pulmonary endothelial Tph1 attenuates hypoxiainduced pulmonary hypertension. Mol. Ther. 20, 1516–1528.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    United Network for Organ Sharing Scientific Registry Data. Scholar
  92. 92.
    Chiu M.L., Gilliland G.L. 2016. Engineering antibody therapeutics. Curr. Opin. Struct. Biol. 38, 163–173.PubMedCrossRefGoogle Scholar
  93. 93.
    Balyasnikova I.V., Berestetskaya Y.V., Visintine D.J., et al. 2010. Cloning and characterization of a singlechain fragment of monoclonal antibody 9B9 for targeting angiotensin-converting enzyme. Microvasc. Res. 80, 355–364.PubMedCrossRefGoogle Scholar
  94. 94.
    Bruggemann M., Osborn M.J., Ma B., et al. 2015. Human antibody production in transgenic animals. Arch. Immunol. Ther. Exp. (Warszawa). 63, 101–108.CrossRefGoogle Scholar
  95. 95.
    Paduch M., Koide A., Uysal S., et al. 2013. Generating conformation-specific synthetic antibodies to trap proteins in selected functional states. Methods. 60, 3–14.PubMedCrossRefGoogle Scholar
  96. 96.
    Yakimenko E.F., Yazova A.K., Goussev A.I., Abelev G.I. 2003. New approaches for the detection and characterization of alpha-fetoprotein epitope variants. Tumour Biol. 24, 1–8.PubMedCrossRefGoogle Scholar
  97. 1.
    Feldmann M., Maini R.N. 2001. Anti-TNF alpha therapy of rheumatoid arthritis: What have we learned? Annu. Rev. Immunol. 19, 163–196.PubMedCrossRefGoogle Scholar
  98. 2.
    Efimov G.A., Kruglov A.A., Tillib S.V., Kuprash D.V., Nedospasov S.A. 2009. Tumor Necrosis Factor and the consequences of its ablation in vivo. Mol. Immunol. 47, 19–27.PubMedCrossRefGoogle Scholar
  99. 3.
    Petyovka N., Lyach L., Voitenok N.N. 1995. Homologous ELISA for detection of oligomeric human TNF: Properties of the assay. J. Immunol. Methods. 186, 161–170.PubMedCrossRefGoogle Scholar
  100. 4.
    Nedospasov S.A., Shakhov A.N., Turetskaya R.L., et al. 1986. Tandem arrangement of genes coding for tumor necrosis factor (TNF-alpha) and lymphotoxin (TNF-beta) in the human genome. Cold Spring Harbor Symp. Quant. Biol. 51 (1), 611–624.PubMedCrossRefGoogle Scholar
  101. 5.
    Radko B.V., Boitchenko V.E., Nedospasov S.A., Korobko V.G. 2002. Characterization of the genes encoding variable light and heavy chains of the highaffinity monoclonal antibody against human tumor necrosis factor. Russ. J. Immunol. 7, 371–374.PubMedGoogle Scholar
  102. 6.
    Efimov G.A., Vakhrusheva O.A., Sazykin A.Y., et al. 2009. Recombinant single-chain antibodies inhibiting biological activity of human tumor necrosis factor. Russ. J. Immunol. 3, 23–29.Google Scholar
  103. 7.
    Kruglov A.A., Shebzukhov Y.V., Kuchmiy A., et al. 2008. Mice in which human TNF is mediating both beneficial and deleterious functions: A model comparison of different blockade strategies. Cytokine. 43, 271–271.CrossRefGoogle Scholar
  104. 8.
    Olleros M.L., Chavez-Galan L., Segueni N., et al. 2015. Control of mycobacterial infections in mice expressing human tumor necrosis factor (TNF) but not mouse TNF. Infect. Immun. 83, 3612–3623.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 9.
    Krieger E., Vriend G. 2014. YASARA View: Molecular graphics for all devices—from smartphones to workstations. Bioinformatics. 30, 2981–2982.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 10.
    Espevik T., Nissen-Meyer J. 1986. A highly sensitive cell line, WEHI 164 clone 13, for measuring cytotoxic factor/tumor necrosis factor from human monocytes. J. Immunol. Methods. 95, 99–105.PubMedCrossRefGoogle Scholar
  107. 11.
    Shingarova L.N., Sagaidak L.N., Turetskaia R.L., et al. 1996. Human tumor necrosis factor mutants: Preparation and some properties. Bioorgan. Khim. 22, 243–251.Google Scholar
  108. 12.
    Kaymakcalan Z., Sakorafas P., Bose S., et al. 2009. Comparisons of affinities, avidities, and complement activation of adalimumab, infliximab, and etanercept in binding to soluble and membrane tumor necrosis factor. Clin. Immunol. 131, 308–316.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • G. A. Efimov
    • 1
    • 2
    • 3
  • J. M. H. Raats
    • 4
  • R. G. S. Chirivi
    • 4
  • J. W. G. van Rosmalen
    • 4
  • S. A. Nedospasov
    • 2
    • 3
    • 5
  1. 1.National Research Center for HematologyMinistry of Healthcare of the Russian FederationMoscowRussia
  2. 2.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  3. 3.Moscow State UniversityMoscowRussia
  4. 4.ModiQuest B.V.AE OssThe Netherlands
  5. 5.Lobachevsky University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations