Molecular Biology

, Volume 51, Issue 6, pp 788–803 | Cite as

Targeted Bifunctional Proteins and Hybrid Nanoconstructs for Cancer Diagnostics and Therapies

Current Trends in the Application of Monoclonal Antibodies Special Issue


In this review, the authors' works published within the past 5 years devoted to the development of bifunctional hybrid nanostructures based on the targeting polypeptides and nanoparticles of various origin (quantum dots, nanogold, nanodiamonds, upconversion nanoparticles, magnetic and polymer nanoparticles) as modules that ensure visualization and various damaging effects on cancer cells are surveyed and the prospects of their application in theranostics and precision medicine have been contemplated.


DARPins scFv HER2 protein photosensitizers riboflavin NIR exotoxin A upconverting nanophosphores nanogold imaging photodynamic and photothermal therapies tumor xenografts Biocomputing 



designed ankyrin repeat protein


enhanced green fluorescent protein


exotoxin A


Förster resonance energy transfer


human epidermal growth factor receptor 2


single-chain antibody variable fragment


infrared light


quantum dot


magnetic nanoparticle


upconversion nanophosphor


photodynamic therapy.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weinberg R.A. 2014. Coming full circle-from endless complexity to simplicity and back again. Cell. 157, 267–271.CrossRefPubMedGoogle Scholar
  2. 2.
    Hanahan D., Weinberg R.A. 2011. Hallmarks of cancer: The next generation. Cell. 144, 646–674.CrossRefPubMedGoogle Scholar
  3. 3.
    Polanovski O.L., Lebedenko E.N., Deyev S.M. 2012. ERBB oncogene proteins as targets for monoclonal antibodies. Biochemistry (Moscow). 77, 227–245.CrossRefPubMedGoogle Scholar
  4. 4.
    Shields J.D., Kourtis I.C., Tomei A.A. 2010. Induction of lymphoid like stroma and immune escape by tumors that express the chemokine CCL21. Science. 328, 749–752.CrossRefPubMedGoogle Scholar
  5. 5.
    Gajewski T.F., Schreiber H., Fu Y.X. 2013. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lin C.F., Lin C.M., Lee K.Y. 2017. Escape from IFN-γ-dependent immunosurveillance in tumorigenesis. J. Biomed. Sci. 24, 10.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Arnedos M., Vicier C., Loi S., Lefebvre C. 2015. Precision medicine for metastatic breast cancer-limitations and solutions. Nat. Rev. Clin. Oncol. 12, 693–704.CrossRefPubMedGoogle Scholar
  8. 8.
    Lloyd K.C., Meehan T., Beaudet A. 2015. Precision medicine: Look to the mice. Science. 349, 390.CrossRefPubMedGoogle Scholar
  9. 9.
    Melero I., Berman D.M., Aznar M.A. 2015. Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat. Rev. Cancer. 15, 457–472.CrossRefPubMedGoogle Scholar
  10. 10.
    Deev S.M., Lebedenko E.N. 2009. Antibody engineering: Barnase–barstar module as a molecular constructor. Bioorg. Khim. 35, 761–778.PubMedGoogle Scholar
  11. 11.
    Deev S.M., Lebedenko E.N. 2009. Modern technologies for creating synthetic antibodies for clinical application. Acta Naturae. 1, 32–50.Google Scholar
  12. 12.
    Deyev S.M., Lebedenko E.N., Petrovskaya L.E. 2015. Man-made antibodies and immunoconjugates with desired properties: Function optimization using structural engineering. Russ. Chem. Rev. 84, 1–26.CrossRefGoogle Scholar
  13. 13.
    Vijayaraghavan P., Liu C.H., Vankayala R. 2014. Designing multi-branched gold nanoechinus for NIR light activated dual modal photodynamic and photothermal therapy in the second biological window. Adv. Mater. 26, 6689–6695.CrossRefPubMedGoogle Scholar
  14. 14.
    Zhou A., Wei Y., Chen Q., Xing D. 2015. In vivo nearinfrared photodynamic therapy based on targeted upconversion nanoparticles. J. Biomed. Nanotechnol. 11, 2003–2010.CrossRefPubMedGoogle Scholar
  15. 15.
    Grebenik E.A., Kostyuk A.B., Deyev S.M. 2016. Upconversion nanoparticles and their hybrid assemblies for biomedical applications. Russ. Chem. Rev. 85, 277–296.CrossRefGoogle Scholar
  16. 16.
    Zdobnova T.A., Lebedebko E.N., Deyev S.M. 2011. Quantum dots for molecular theranostics. ActaNaturae. 3, 30–50.Google Scholar
  17. 17.
    Ai X., Mu J., Xing B. 2016. Recent advances of lightmediated theranostics. Theranostics. 6, 2439–2457.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sokolov I.L., Cherkasov V.R., Tregubov A.A. 2017. Smart materials on the way to theranostic nanorobots: Molecular machines and nanomotors, advanced biosensors, and intelligent vehicles for drug delivery. Biochim. Biophys. Acta. 1861 (6), 1530–1544. doi 10.1016/j.bbagen.2017.01.027CrossRefPubMedGoogle Scholar
  19. 19.
    Deyev S.M., Lebedenko E.N. 2015. Supramolecular agents for theranostics. Bioorg. Khim. 41, 539–552.PubMedGoogle Scholar
  20. 20.
    Martsev S.P., Kravchuk Z.I., Chumanevich A.A. 1998. Antiferritin single-chain antibody: A functional protein with incomplete folding? FEBS Lett. 28, 458–462.CrossRefGoogle Scholar
  21. 21.
    Martsev S.P., Chumanevich A.A., Vlasov A.P. 2000. Antiferritin single-chain Fv fragment is a functional protein with properties of a partially structured state: Comparison with the completely folded V (L) domain. Biochemistry. 39 (27), 8047–8057.CrossRefPubMedGoogle Scholar
  22. 22.
    Efimov G.A., Kruglov A.A., Khlopchatnikova Z.V. 2016. Cell-type-restricted anti-cytokine therapy: TNF inhibition from one pathogenic source. Proc. Natl. Acad. Sci. U. S. A. 113, 3006–3011.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Glinka E.M., Edelweiss E.F., Sapozhnikov A.M., Deyev S.M. 2006. A new vector for controllable expression of an anti-HER2/neu mini-antibody–barnase fusion protein in HEK 293T cells. Gene. 366, 97–103.CrossRefPubMedGoogle Scholar
  24. 24.
    Serebrovskaya E.O., Edelweiss E.F., Stremovskiy O. 2009. Targeting cancer cells by using an antireceptor antibody–photosensitizer fusion protein. Proc. Natl. Acad. Sci. U. S. A. 106, 9221–9225.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mironova K.E., Proshkina G.M., Ryabova A.V. 2013. Genetically encoded immunophotosensitizer 4D5scFVminiSOG is a highly selective agent for targeted photokilling of tumor cells in vitro. Theranostics. 3, 831–840.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Deyev S.M., Waibel R., Lebedenko E.N. 2003. Design of multivalent complexes using the barnase barstar module. Nat. Biotechnol. 21, 1486–1492.CrossRefPubMedGoogle Scholar
  27. 27.
    Bulina M.E., Chudakov D.M., Britanova O.V. 2006. A genetically encoded photosensitizer. Nat. Biotechnol. 24, 95–99.CrossRefPubMedGoogle Scholar
  28. 28.
    Shu X., Lev-Ram V., Deerinck T.J. 2011. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol. 9, e1001041.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Proshkina G.M., Mironova K.E., Deyev S.M., Petrov R.V. 2015. Mechanism of the cytotoxic action of immunophototoxin 4D5scFV-miniSOG on HER2/neu-positive cancer cells. Dokl. Biochem. Biophys. 460, 16–19.CrossRefPubMedGoogle Scholar
  30. 30.
    Occhipinti E., Verderio P., Natalello A. 2011. Investigating the structural biofunctionality of antibodies conjugated to magnetic nanoparticles. Nanoscale. 3, 387–390.CrossRefPubMedGoogle Scholar
  31. 31.
    Avvakumova S., Colombo M., Tortora P., Prosperi D. 2014. Biotechnological approaches toward nanoparticle biofunctionalization. Trends Biotechnol. 32, 11–20.CrossRefPubMedGoogle Scholar
  32. 32.
    Reverdatto S., Burz D.S., Shekhtman A. 2015. Peptide aptamers: Development and applications. Curr. Top. Med. Chem. 15, 1082–1101.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Stumpp M.T., Amstutz P. 2007. DARPins: A true alternative to antibodies. Curr. Opin. Drug Discov. Dev. 10, 153–159.Google Scholar
  34. 34.
    Binz H.K., Amstutz P., Plückthun A. 2005. Engineering novel binding proteins from nonimmunoglobulin domains. Nat. Biotechnol. 23, 1257–1268.CrossRefPubMedGoogle Scholar
  35. 35.
    Binz H.K., Stumpp M.T., Forrer P. 2003. Designing repeat proteins: Well expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J. Mol. Biol. 332, 489–503.CrossRefPubMedGoogle Scholar
  36. 36.
    Mosavi L.K., Cammett T.J., Desrosiers D.C., Peng Z. 2004. The ankyrin repeat as molecular architecture for protein recognition. Protein Sci. 13, 1435–1448.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Plückthun A. 2015. Designed ankyrin repeat proteins (DARPins): Binding proteins for research, diagnostics, and therapy. Annu. Rev. Pharmacol. Toxicol. 55, 489–511.CrossRefPubMedGoogle Scholar
  38. 38.
    Weidle U.H., Auer J., Brinkmann U. 2013. The emerging role of new protein scaffold-based agents for treatment of cancer. Cancer Genomics Proteomics. 10, 155–168.PubMedGoogle Scholar
  39. 39.
    Zahnd C., Kawe M., Stumpp M.T. 2010. Efficient tumor targeting with high-affinity designed ankyrin repeat proteins: Effects of affinity and molecular size. Cancer Res. 70, 1595–1605.CrossRefPubMedGoogle Scholar
  40. 40.
    Martin-Killias P., Stefan N., Rothschild S. 2011. A novel fusion toxin derived from an EpCAM-specific designed ankyrin repeat protein has potent antitumor activity. Clin. Cancer Res. 17, 100–110.CrossRefPubMedGoogle Scholar
  41. 41.
    Boersma Y.L., Chao G., Steiner D. 2011. Bispecific designed ankyrin repeat proteins (DARPins) targeting epidermal growth factor receptor inhibit A431 cell proliferation and receptor recycling. J. Biol. Chem. 286, 41273–41285.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Shaner N.C., Campbell R.E., Steinbach P.A. 2004. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572.CrossRefPubMedGoogle Scholar
  43. 43.
    Mironova K.E., Chernykh O.N., Ryabova A.V. (2014) Highly specific hybrid protein DARPin-mCherry for fluorescent visualization of cells overexpressing tumor marker HER2/neu. Biochemistry (Moscow). 79, 1391–1396.Google Scholar
  44. 44.
    Sokolova E., Proshkina G., Kutova O. 2016. Recombinant targeted toxin based on HER2-specific DARPin possesses a strong selective cytotoxic effect in vitro and a potent antitumor activity in vivo. J. Controlled Release. 233, 48–56.CrossRefGoogle Scholar
  45. 45.
    Weldon J.E., Pastan I. 2011. A guide to taming a toxin: Recombinant immunotoxins constructed from Pseudomonas exotoxin A for the treatment of cancer. FEBS J. 278, 4683–4700.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sokolova E.A., Stremovskiy O.A., Zdobnova T.A., et al. 2015. Recombinant immunotoxin 4D5scFv-PE40 for targeted therapy of HER2-positive tumors. ActaNaturae. 7 (4), 93–96.Google Scholar
  47. 47.
    Zdobnova T., Sokolova E., Stremovskiy O. 2015. A novel far-red fluorescent xenograft model of ovarian carcinoma for preclinical evaluation of HER2-targeted immunotoxins. Oncotarget. 6, 30919–30928.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Scherbo D., Merzlyak E.M., Chepurnykh T.V. 2007. Bright far-red fluorescent protein for whole-body imaging. Nat. Methods. 4, 741–746.CrossRefGoogle Scholar
  49. 49.
    Proshkina G.M., Shilova O.N., Ryabova A.V. 2015. A new anticancer toxin based on HER2/neu-specific DARPin and photoactive flavoprotein miniSOG. Biochimie. 118, 116–122.CrossRefPubMedGoogle Scholar
  50. 50.
    Shilova O.N., Proshkina G.M., Ryabova A.V., et al. 2017. Dokl. Biochem. Biophys. 475, 256–258.Google Scholar
  51. 51.
    Souslova E.A., Mironova K.E., Deyev S.M. 2017. Applications of genetically encoded photosensitizer miniSOG: From correlative light electron microscopy to immunophotosensitizing. J. Biophotonics. 10, 338–352.CrossRefPubMedGoogle Scholar
  52. 52.
    Plaetzer K., Krammer B., Berlanda J. 2009. Photophysics and photochemistry of photodynamic therapy: Fundamental aspects. Lasers Med. Sci. 24, 259–268.CrossRefPubMedGoogle Scholar
  53. 53.
    Shramova E.I., Proshkina G.M., Chumakov S.P. 2016. Flavoprotein miniSOG cytotoxisity can be induced by bioluminescence resonance energy transfer. Acta Naturae. 8, 118–123.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Jost C., Schilling J., Tamaskovic R. 2013. Structural basis for eliciting a cytotoxic effect in HER2-overexpressing cancer cells via binding to the extracellular domain of HER2. Structure. 21, 1979–1991.CrossRefPubMedGoogle Scholar
  55. 55.
    Shilova O.N., Proshkina G.M., Lebedenko E.N., Deyev S.M. 2015. Internalization and recycling of the HER2 receptor on human breast adenocarcinoma cells treated with targeted phototoxic protein DARPin-miniSOG. Acta Naturae. 7, 126–132.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Sriraman S.K., Aryasomayajula B., Torchilin V.P. 2014. Barriers to drug delivery in solid tumors. Tissue Barriers. 2, e29528.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Nel A., Mädler L., Velegol D. 2009. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8, 543–557.CrossRefPubMedGoogle Scholar
  58. 58.
    Weissleder R., Pittet M.J. 2011. Intravital imaging. Cell. 147, 983–991.CrossRefPubMedGoogle Scholar
  59. 59.
    Dykman L.A., Khlebtsov N.G. 2016. Multifunctional gold-based nanocomposites for theranostics. Biomaterials. 108, 13–34.CrossRefPubMedGoogle Scholar
  60. 60.
    Balasubramanian G., Lazariev A., Arumugam S.R., Duan D.W. 2014. Nitrogen-vacancy color center in diamond-emerging nanoscale applications in bioimaging and biosensing. Curr. Opin. Chem. Biol. 20, 69–77.CrossRefPubMedGoogle Scholar
  61. 61.
    Zijlmans H.J., Bonnet J., Burton J., et al. 1999. Detection of cell and tissue surface antigens using up-converting phosphors: A new reporter technology. Anal. Biochem. 267, 30–36.CrossRefPubMedGoogle Scholar
  62. 62.
    Wu X., Chen G., Shen J., et al. 2015. Upconversion nanoparticles: A versatile solution to multiscale biological imaging. Bioconjug. Chem. 26, 166–175.CrossRefPubMedGoogle Scholar
  63. 63.
    Zhao J., Jin D., Schartner E.P., et al. 2013. Singlenanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat. Nanotechnol. 8, 729–734.CrossRefPubMedGoogle Scholar
  64. 64.
    Weissleder R., Pittet M.J. 2008. Imaging in the era of molecular oncology. Nature. 452, 580–589.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Sekatskii S.K., Favre M., Dietler G., et al. 2010. Force spectroscopy of barnase-barstar single molecule interaction. J. Mol. Recognit. 23, 583–558.CrossRefPubMedGoogle Scholar
  66. 66.
    Sreenivasan V.K.A., Ivukina E.A., Deng W., et al. 2011. Barstar:barnase—a versatile platform for colloidal diamond bioconjugation. J. Mater. Chem. 21, 65–68.CrossRefGoogle Scholar
  67. 67.
    Ivanova J.L., Edelweiss E., Leonova O.G., et al. 2012. The use of fusion protein scFv-dibarnase:barstar-gold complex for studying P185HER2 receptor distribution in human cancer cells. Biochimie. 94, 1833–1836.CrossRefPubMedGoogle Scholar
  68. 68.
    Balalaeva I.V., Zdobnova T.A., Krutova I.V., et al. 2012. Passive and active targeting of quantum dots for whole J. Biophotonics. 5, 860–867.CrossRefPubMedGoogle Scholar
  69. 69.
    Zdobnova T.A., Stremovskiy O.A., Lebedenko E.N., Deyev S.M. 2012. Self-assembling complexes of quantum dots and scFv antibodies for targeting and imaging of cancer cells. PLOS ONE. 7, e48248.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Grebenik E.A., Nadort A., Generalova A.N., et al. 2013. Feasibility study of the optical imaging of a breast cancer lesion labeled with upconversion nanoparticle biocomplexes. J. Biomed. Opt. 18, 76004.CrossRefPubMedGoogle Scholar
  71. 71.
    Grebenik E.A., Generalova A.N., Nechaev A.V., et al. 2014. Specific visualization of tumor cells using upconversion nanophosphors. Acta Naturae. 6, 48–53.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Nikitin M.P., Zdobnova T.A., Lukash S.V., et al. 2010. Protein-assisted self-assembly of multifunctional nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 107, 5827–5832.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Generalova A.N., Kochneva I.K., Khaydukov E.V., et al. 2015. Submicron polyacrolein particles in situ embedded with upconversion nanoparticles for bioassay. Nanoscale. 7, 1709–1717.CrossRefPubMedGoogle Scholar
  74. 74.
    Generalova A.N., Rocheva V.V., Nechaev A.V., et al. 2016. PEG-modified upconversion nanoparticles for in vivo optical imaging of tumors. RSC Advances. 6, 30089–30097.CrossRefGoogle Scholar
  75. 75.
    Ackroyd R., Kelty C., Brown N., Reed M. 2001. The history of photodetection and photodynamic therapy. Photochem. Photobiol. 74, 656–669.CrossRefPubMedGoogle Scholar
  76. 76.
    van Straten D., Mashayekhi V., de Bruijn H.S., et al. 2017. Oncologic photodynamic therapy: Basic principles, current clinical status and future directions. Cancers (Basel). 9, E19.CrossRefPubMedGoogle Scholar
  77. 77.
    Huang X., El-Sayed M.A. 2010. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 1, 13–28.CrossRefGoogle Scholar
  78. 78.
    Zhang P., Steelant W., Kumar M., Scholfield M. 2007. Versatile photosensitizers for photodynamic therapy at infrared excitation. J. Am. Chem. Soc. 129, 4526–4527.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Idris N.M., Gnanasammandhan M.K., Zhang J., et al. 2012. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 18, 1580–1585.CrossRefPubMedGoogle Scholar
  80. 80.
    Liu Y., Liu Y., Bu W., et al. 2015. Hypoxia induced by upconversion-based photodynamic therapy: Towards highly effective synergistic bioreductive therapy in tumors. Angew. Chem. Int. Ed. 54, 8105–8109.CrossRefGoogle Scholar
  81. 81.
    Lu S., Tu D., Hu P., et al. 2015. Multifunctional nanobioprobes based on rattle-structured upconverting luminescent nanoparticles. Angew. Chem. Int. Ed. Engl. 54, 7915–7919.CrossRefPubMedGoogle Scholar
  82. 82.
    Liang L., Lu Y., Zhang R., et al. 2017. Deep-penetrating photodynamic therapy with KillerRed mediated by upconversion nanoparticles. Acta Biomater. 51, 461–470.CrossRefPubMedGoogle Scholar
  83. 83.
    Khaydukov E.V., Mironova K.E., Semchishen V.A., et al. 2016. Riboflavin photoactivation by upconversion nanoparticles for cancer treatment. Sci. Repts. 6, 35103.CrossRefGoogle Scholar
  84. 84.
    Bäumler W., Regensburger J., Knak A., et al. 2012. UVA and endogenous photosensitizers—the detection of singlet oxygen by its luminescence. Photochem. Photobiol. Sci. 11, 107–117.CrossRefPubMedGoogle Scholar
  85. 85.
    Ruane P.H., Edrich R., Gampp D., et al. 2004. Photochemical inactivation of selected viruses and bacteria in platelet concentrates using riboflavin and light. Transfusion. 44, 877–885.CrossRefPubMedGoogle Scholar
  86. 86.
    Bareford L.M., Phelps M.A., Foraker A.B., Swaan P.W. 2008. Intracellular processing of riboflavin in human breast cancer cells. Mol. Pharmaceut. 5, 839–848.CrossRefGoogle Scholar
  87. 87.
    de Souza Queiroz K.C., Zambuzzi W.F., Santos de Souza A.C., et al. 2007. A possible anti-proliferative and anti-metastatic effect of irradiated riboflavin in solid tumours. Cancer Lett. 258, 126–134.CrossRefPubMedGoogle Scholar
  88. 88.
    Aghaeva U.F., Nikitin M.P., Lukash S.V., Deyev S.M. 2013. Denaturation-resistant bifunctional colloidal superstructures assembled via the proteinaceous barnase–barstar interface. ACS Nano. 7, 950–961.CrossRefGoogle Scholar
  89. 89.
    Nikitin M.P., Shipunova V.O., Deyev S.M., Nikitin P.I. 2014. Biocomputing based on particle disassembly. Nat. Nanotechnol. 9, 716–722.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Shemyakin–Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations