Molecular Biology

, Volume 51, Issue 6, pp 906–920 | Cite as

Conformational Fingerprinting Using Monoclonal Antibodies (on the Example of Angiotensin I-Converting Enzyme-ACE)

Current Trends in the Application of Monoclonal Antibodies Special Issue


During the past 30 years my laboratory has generated 40+ monoclonal antibodies (mAbs) directed to structural and conformational epitopes on human ACE as well as ACE from rats, mice and other species. These mAbs were successfully used for detection and quantification of ACE by ELISA, Western blotting, flow cytometry and immunohistochemistry. In all these applications mainly single mAbs were used. We hypothesized that we can obtain a completely new kind of information about ACE structure and function if we use the whole set of mAbs directed to different epitopes on the ACE molecule. When we finished epitope mapping of all mAbs to ACE (and especially, those recognizing conformational epitopes), we realized that we had obtained a new tool to study ACE. First, we demonstrated that binding of some mAbs is very sensitive to local conformational changes on the ACE surface—due to local denaturation, inactivation, ACE inhibitor or mAbs binding or due to diseases. Second, we were able to detect, localize and characterize several human ACE mutations. And, finally, we established a new concept—conformational fingerprinting of ACE using mAbs that in turn allowed us to obtain evidence for tissue specificity of ACE, which has promising scientific and diagnostic perspectives. The initial goal for the generation of mAbs to ACE 30 years ago was obtaining mAbs to organ-specific endothelial cells, which could be used for organ-specific drug delivery. Our systematic work on characterization of mAbs to numerous epitopes on ACE during these years has lead not only to the generation of the most effective mAbs for specific drug/gene delivery into the lung capillaries, but also to the establishment of the concept of conformational fingerprinting of ACE, which in turn gives a theoretical base for the generation of mAbs, specific for ACE from different organs. We believe that this concept could be applicable for any glycoprotein against which there is a set of mAbs to different epitopes.


angiotensin I-converting enzyme monoclonal antibodies conformation tissue specificity drug/gene lung targeting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Köhler G., Milstein C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 256, 495–497.CrossRefPubMedGoogle Scholar
  2. 2.
  3. 3.
    Auerbach R., Alby L., Morrissey L.W., et al. 1985. Expression of organ-specific antigens on capillary endothelial cells. Microvasc. Res. 29, 401–411.CrossRefPubMedGoogle Scholar
  4. 4.
    Allikmets E.Y., Danilov S.M. 1986. Mitogen-induced disorganization of capillary-like structures formed by human large vessel endothelial cells in vitro. Tissue Cell. 18, 481–489.CrossRefPubMedGoogle Scholar
  5. 5.
    Sturrock E.D., Anthony C.S., Danilov S.M. 2012. Peptidyl-dipeptidase A/angiotensin I-converting enzyme. In: Handbook of Proteolytic Enzymes, 3rd ed. Eds. Rawlings N.D., Salvesen G. Oxford: Academic Press, pp. 480–494.Google Scholar
  6. 6.
    Bernstein K.E., Ong F.S., Blackwell W.L., et al. 2013. A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol. Rev. 65, 1–46.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Danilov S.M., Franke F.E., Erdos E.G. 1997. Angiotensin-converting enzyme (CD143). In: Leucocyte Typing VI: White Cell Differentiation Antigens. Eds. Kishimoto T. New York: Garland, pp. 746–749.Google Scholar
  8. 8.
    Dzau V.J., Bernstein K., Celermajer D., et al. 2001. The relevance of tissue angiotensin-converting enzyme: Manifestations in mechanistic and endpoint data. Am. J. Cardiol. 88, 1L–20L.CrossRefPubMedGoogle Scholar
  9. 9.
    Metzger R., Franke F.F., Bohle R.-M., et al. 2011. Heterogeneous distribution of angiotensin I-converting enzyme (CD143) in the human and rat vascular systems: Vessels, organs and species specificity. Microvasc. Res. 82, 206–215.CrossRefGoogle Scholar
  10. 10.
    Silverstein E., Friedland J., Setton C. 1978. Angiotensin-converting enzyme in macrophages and Freund's adjuvant granuloma. Isr. J. Med. Sci. 14, 314–318.PubMedGoogle Scholar
  11. 11.
    Danilov S.M., Sadovnikova E., Scharenbourg N., et al. 2003. Angiotensin-converting enzyme (CD143) is abundantly expressed by dendritic cells and discriminates human monocytes-derived dendritic cells from acute myeloid leukemia-derived dendritic cells. Exp. Hem. 31, 1301–1309.CrossRefGoogle Scholar
  12. 12.
    Parkin E.T., Turner A.J., Hooper N.M. 2004. Secretase-mediated cell surface shedding of the angiotensin-converting enzyme. Protein Pept. Lett. 11, 423–432.CrossRefPubMedGoogle Scholar
  13. 13.
    Alhenc-Gelas F., Richard J., Courbon D., et al. 1991. Distribution of plasma angiotensin I-converting enzyme levels in healthy men: Relationship to environmental and hormonal parameters. J. Lab. Clin. Med. 117, 33–39.PubMedGoogle Scholar
  14. 14.
    Lieberman J. 1975. Elevation of serum angiotensin-converting enzyme level in sarcoidosis. Am. J. Med. 59, 365–372.CrossRefPubMedGoogle Scholar
  15. 15.
    Lieberman J., Beutler E. 1976. Elevation of angiotensin-converting enzyme in Gaucher's disease. N. Engl. J. Med. 294, 1442–1444.CrossRefPubMedGoogle Scholar
  16. 16.
    Silverstein E., Friedland J. 1977. Elevated serum and spleen angiotensin converting enzyme and serum lysozyme in Gaucher's disease. Clin. Chim. Acta. 74, 21–25.CrossRefPubMedGoogle Scholar
  17. 17.
    Rigat B., Hubert C., Alhenc-Gelas F., et al. 1990. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Invest. 86, 1343–1346.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Danilov S.M., Savoie F., Lenoir B., et al. 1996. Development of enzyme-linked immunoassays for human angiotensin I-converting enzyme suitable for largescale studies. J. Hypertens. 14, 719–727.CrossRefPubMedGoogle Scholar
  19. 19.
    Gribouval O., Gonzales M., Neuhaus T. 2005. Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat. Genet. 37, 964–968.CrossRefPubMedGoogle Scholar
  20. 20.
    Kramers C., Danilov S.M., Deinum J., et al. 2001. A point mutation in the stalk of angiotensin-converting enzyme causes a dramatic increase in serum ACE, but no cardiovascular disease. Circulation. 104, 1236–1240.CrossRefPubMedGoogle Scholar
  21. 21.
    Danilov S.M., Gordon K., Nesterovitch A.B., et al. 2011. Angiotensin I-converting enzyme mutation (Y465D) causes dramatic increase in blood ACE via accelerated ACE shedding due to changes of ACE dimerization. PLoS ONE. 6, e25952.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Nesterovitch A.B., Hogarth K.D., Adarichev V.A., et al. 2009. Point mutation of angiotensin I-converting enzyme (Trp1197Stop) determines a dramatic increase in blood ACE. PLoS ONE. 4, e8282.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Persu A., Lambert M., Deinum J., et al. 2013. A novel splice-site mutation in angiotensin I-converting enzyme (ACE) gene, c.3691+1G>A (IVS25+1G>A), causes a dramatic increase in circulating ACE through deletion of the transmembrane anchor. PLoS ONE 746-749, e59537.Google Scholar
  24. 24.
    Soubrier F., Alhenc-Gelas F., Hubert C., et al. 1988. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc. Natl. Acad. Sci. U. S. A. 85, 9386–9390.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chen H.-L., Lunsdorf H., Hecht H.-J., Tsai H. 2010. Porcine pulmonary angiotensin I-converting enzyme: Biochemical characterization and spatial arrangement of the N- and C-domains by three-dimensional electron-microscopic reconstruction. Micron. 41, 674–685.CrossRefPubMedGoogle Scholar
  26. 26.
    Menard J., Patchett A.A. 2001. Angiotensin-converting enzyme inhibitors. Adv. Protein Chem. 56, 13–75.CrossRefPubMedGoogle Scholar
  27. 27.
    Sakharov I.Y., Dukhanina E.A, Danilov S.M. 1986. Isolation and properties of the angiotensin-converting enzyme from human lungs. Biokhimiya. 51, 946–951.Google Scholar
  28. 28.
    Sakharov I.Y., Danilov S.M., Dukhanina E.A. 1987. Affinity chromatography and some properties of the angiotensin-converting enzyme from human heart. Biochim. Biophys. Acta. 923, 143–149.CrossRefPubMedGoogle Scholar
  29. 29.
    Sakharov I.Y., Danilov S.M., Sukhova N. 1987. Isolation of human liver angiotensin-converting enzyme by chromatofocusing. Analyt. Biochem. 116, 14–17.CrossRefGoogle Scholar
  30. 30.
    Danilov S.M., Jaspard E., Churakova T., et al. 1994. Structure-function analysis of angiotensin-converting enzyme using monoclonal antibodies. Selective inhibition of N-domain active center. J. Biol. Chem. 269, 26806–26814.PubMedGoogle Scholar
  31. 31.
    Tzartos S.J. 1988. Myastenia gravis studied by monoclonal antibodies to acetylcholine receptor. In Vivo. 2, 105–110.PubMedGoogle Scholar
  32. 32.
    Danilov S.M., Allikmets E.Y., Sakharov I.Y., et al. 1987. Monoclonal antibodies to human angiotensin-converting enzyme. Biotech. Appl. Biochem. 9, 319–312.Google Scholar
  33. 33.
    Levinson S.S., Miller J.J. 2002. Towards a better understanding of heterophile (and the like) antibody interference with modern immunoassays. Clin. Chim. Acta Int. J. Clin. Chem. 325, 1–15.CrossRefGoogle Scholar
  34. 34.
    Balyasnikova I.V., Metzger R., Franke F.E., Danilov S.M. 2003. Monoclonal antibodies to denatured human ACE (CD 143): Broad species specificity, reactivity on paraffin sections and detection of subtle conformational changes in the C-terminal domain of ACE. Tissue Antigens. 61, 49–62.CrossRefPubMedGoogle Scholar
  35. 35.
    Balyasnikova I.V., Metzger R., Franke F.E., et al. 2008. Epitope mapping of mAbs to denatured human testicular ACE. Tissue Antigens. 72, 354–368.CrossRefPubMedGoogle Scholar
  36. 36.
    Naperova I.A., Balyasnikova I.V., Schwartz D.E., et al. 2008. Mapping of conformational mAb epitopes to the C domain of human angiotensin I-converting enzyme (ACE). J. Proteome Res. 7, 3396–3411.CrossRefPubMedGoogle Scholar
  37. 37.
    Woodman Z.L., Schwager S.L., Redelinghuys P., et al. 2005. The N domain of somatic angiotensin-converting enzyme negatively regulates ectodomain shedding and catalytic activity. Biochem. J. 389, 739–744.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Balyasnikova I.V., Sun Z-L., Berestetskaya Y.V., et al. 2005a. Monoclonal antibodies 1B3 and 5C8 as probes for monitoring the nativity of C-terminal end of soluble angiotensin-converting enzyme (ACE). Hybridoma. 24, 14–25.CrossRefPubMedGoogle Scholar
  39. 39.
    Balyasnikova I.V., Skirgello O.E., Binevski P.V., et al. 2007. Monoclonal antibodies 1G12 and 6A12 to the N-domain of human angiotensin-converting enzyme: Fine epitope mapping and antibody-based method for revelation and quantification of ACE inhibitors in the human blood. J. Proteome Res. 6, 1580–1594.CrossRefPubMedGoogle Scholar
  40. 40.
    Skirgello O.E., Balyasnikova I.V., Binevski P.V., et al. 2006. Inhibitory antibodies to human angiotensin-converting enzyme: Fine epitope mapping and mechanism of action. Biochemistry.45, 4831–4847.CrossRefPubMedGoogle Scholar
  41. 41.
    Danilov S.M., Watermeyer J.M., Balyasnikova I.V., et al. 2007. Fine epitope mapping of monoclonal antibody 5F1 reveals anticatalytic activity toward the N domain of human angiotensin-converting enzyme. Biochemistry. 46, 9019–9031.CrossRefPubMedGoogle Scholar
  42. 42.
    Gordon K., Balyasnikova I.V., Nesterovitch A.B., et al. 2010. Fine epitope mapping of monoclonal antibodies 9B9 and 3G8, to the N domain of human angiotensin I-converting enzyme (ACE) defines a region involved in regulating ACE dimerization and shedding. Tissue Antigens. 75, 136–150.CrossRefPubMedGoogle Scholar
  43. 43.
    Balyasnikova I.V., Karran E.H., Albrecht R.FII., Danilov S.M. 2002. Epitope-specific antibody-induced cleavage of angiotensin-converting enzyme from the cell surface. Biochem. J. 362, 585–595.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kost O.A., Balyasnikova I.V., Chemodanova E.E., et al. 2003. Epitope-dependent blocking of the angiotensin- converting enzyme dimerization by monoclonal antibodies to N-terminal domain of ACE: Possible link of ACE dimerization and shedding from the cell surface. Biochemistry. 42, 6965–6976.CrossRefPubMedGoogle Scholar
  45. 45.
    Petrov M.N., Shilo V.Y., Tarasov A.V., et al. 2012. Conformational changes of blood ACE in chronic uremia. PLoS ONE. 7, e49290.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Danilov S.M., Deinum J., Balyasnikova I.V., et al. 2005. Detection of mutated angiotensin-converting enzyme (ACE), by serum/plasma analysis using a pair of monoclonal antibodies. Clin. Chem. 51, 1040–1043.CrossRefPubMedGoogle Scholar
  47. 47.
    Danilov S.M., Kalinin S., Chen Z., et al. 2010. Gln1069Arg angiotensin I-converting enzyme mutation impairs transport to the cell surface resulting in selective denaturation of the C-domain. PLoS ONE. 5, e10438.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Danilov S.M., Wade M.S., Schwager S.L., et al. 2014. A novel angiotensin I-converting enzyme mutation (S333W) impairs N-domain enzymatic cleavage of the anti-fibrotic peptide, Ac-SDKP. PLoS ONE. 9, e88001.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Danilov S.M., Luensdorf H., Nesterovitch A.B., et al. 2016. Lysozyme and bilirubin bind to ACE and regulates ACE conformation and shedding. Sci. Rep. 6, 34913.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Danilov S.M., Balyasnikova I.B., Danilova A.S., et al. 2010. Conformational fingerprinting of the angiotensin- converting enzyme (ACE): Application in sarcoidosis. J. Proteome Res. 9, 5782–5793.CrossRefPubMedGoogle Scholar
  51. 51.
    Balyasnikova I.V., Metzger R., Visintine D., et al. 2005. A new set of monoclonal antibodies to rat angiotensin I-converting enzyme (ACE) for the lung endothelial targeting. Pulm. Pharm. Ther. 18, 251–267.CrossRefGoogle Scholar
  52. 52.
    Balyasnikova I.V., Metzger R., Sun Z.-L., et al. 2005. Development and characterization of rat monoclonal antibodies to denatured mouse angiotensin-converting enzyme. Tissue Antigens. 65, 240–251.CrossRefPubMedGoogle Scholar
  53. 53.
    Balyasnikova I.V., Sun Z.-L., Metzger R., et al. 2006. Monoclonal antibodies to native mouse angiotensinconverting enzyme (CD143): ACE expression quantification, lung endothelial cell targeting and gene delivery. Tissue Antigens. 67, 10–29.CrossRefPubMedGoogle Scholar
  54. 54.
    Nikolaeva M.A., Balyasnikova I.V., Alexinskaya M.A., et al. 2006. Testicular isoform of angiotensin I-converting enzyme (ACE, CD143) on the surface of human spermatozoa: Revelation and quantification using monoclonal antibodies. Am. J. Reprod. Immunol. 55, 54–68.CrossRefPubMedGoogle Scholar
  55. 55.
    Franke F.E., Pauls K., Kerkman L., et al. 2000. Somatic isoform of angiotensin I-converting enzyme in the pathology of testicular germ cell tumors. Human Pathol. 31, 1466–1476.CrossRefGoogle Scholar
  56. 56.
    Essentials in Glycobiology, 2nd ed. 2009. Eds Varki A., Cummings R.D., Esko J.D., Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.Google Scholar
  57. 57.
    Su Y., Royle L., Radcliffe C.M., et al. 2009. Detailed N-glycan analysis of mannose receptor purified from murine spleen indicates tissue specific sialylation. Biochem. Biophys. Res. Commun. 384, 436–443.CrossRefPubMedGoogle Scholar
  58. 58.
    Fishman A. 1963. Dynamics of the pulmonary circulation. in: Handbook of Physiology, vol. 2. Washington, DC: Am. Physiol. Soc., p. 1667.Google Scholar
  59. 59.
    Silverstein E., Friedland J., Lyons H.A., Gourin A. 1976. Elevation of angiotensin-converting enzyme in granulomatous lymph nodes and serum in sarcoidosis: Clinical and possible pathological significance. Ann. N. Y. Acad. Sci. 278, 498–513.CrossRefPubMedGoogle Scholar
  60. 60.
    Kost O.A., Petrov M.N., Naperova I.A., et al. 2016. Conformational fingerprinting of angiotensin-converting enzyme in the blood in health and disease. Moscow Univ. Chem. Bull. 71 (1), 32–36.CrossRefGoogle Scholar
  61. 61.
    Sidransky E. 2012. Gaucher disease: Insights from a rare Mendelian disorder. Discov. Med. 14, 273–281.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Kryukova O.V., Tikhomirova V.E., Golukhova E.Z., et al. 2015. Tissue specificity of human angiotensin I-converting enzyme. PLoS ONE. 10, e0143455.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Liddy K.A., White M.Y., Cordwell S.J. 2013. Functional decorations: Post-translational modifications and heart disease delineated by targeted proteomics. Genome Med. 5, 20.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Falkenhahn M., Franke F., Bohle R.M., et al. 1995. Cellular distribution of angiotensin converting enzyme after myocardial infarction. Hypertension. 25, 219–226.CrossRefPubMedGoogle Scholar
  65. 65.
    Tikhomirova V.E., Kost O.A., Kryukova O.V., et al. 2017. ACE phenotyping in human heart. PLoS ONE. 12 (8), e0181976. doi 10.1371/journal.pone.0181976CrossRefGoogle Scholar
  66. 66.
    Goette A., Staack T., Rocken C., et al. 2000. Increased expression of extracellular signal-regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation. J. Am. Coll. Cardiol. 35, 1669–1677.CrossRefPubMedGoogle Scholar
  67. 67.
    Xiao H.D., Fuchs S., Campbell D.J., et al. 2004. Mice with cardiac-restricted angiotensin-converting enzyme (ACE) have atrial enlargement, cardiac arrhythmia, and sudden death. Am. J. Pathol. 165, 1019–1032.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Romer F.K. 1984. Clinical and biochemical aspects of sarcoidosis. With special reference to angiotensin-converting enzyme (ACE). Acta Med. Scand. Suppl. 690, 3–96.PubMedGoogle Scholar
  69. 69.
    Hohlbrugger G., Pschorr J., Dahlheim H. 1984. Angiotensin I converting enzyme in the ejaculate of fertile and infertile men. Fertil. Steril. 41, 324–325.CrossRefPubMedGoogle Scholar
  70. 70.
    Ferrara N. 2004. Vascular endothelial growth factor: Basic science and clinical progress. Endocr. Rev. 25, 581–611.CrossRefPubMedGoogle Scholar
  71. 71.
    Grivas N., Goussia A., Stefanou D., Giannakis D. 2016. Microvascular density and immunohistochemicalexpression of VEGF, VEGFR-1 and VEGFR-2 in benign prostatic hyperplasia, high-grade prostate intraepithelial neoplasia and prostate cancer. Cent. Eur. J. Urol. 69, 63–71.Google Scholar
  72. 72.
    Roberts W.G., Palade G.E. 1995. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J. Cell Sci. 108 (6), 2369–2379.PubMedGoogle Scholar
  73. 73.
    Hiemisch H., Gavrilyuk V., Atochina E., et al. 1993. Purification of radiolabeled monoclonal antibodies to angiotensin-converting enzyme significantly improves specificity and efficacy of its targeting into the lung. Nucl. Med. Biol. 20, 435–441.CrossRefPubMedGoogle Scholar
  74. 74.
    Danilov S.M., Sakharov I.Y., Martynov A.V., et al. 1989. Monoclonal antibody to angiotensin-converting enzyme: A powerful tool for lung and vessel studies. J. Mol. Cell. Cardiol. 21 (Suppl. 1), 165–170.CrossRefPubMedGoogle Scholar
  75. 75.
    Danilov S.M., Muzykantov V.R., Martynov A.V., et al. 1991. Lung is the target organ for a monoclonal antibody to angiotensin-converting enzyme. Lab. Invest. 64, 118–124.PubMedGoogle Scholar
  76. 76.
    Danilov S.M., Gavriljuk V.D., Franke F.E., et al. 2001. Lung uptake of antibodies to endothelial antigens: Key determinants of vascular immunotargeting. Am. J. Physiol. Lung Physiol. 280, L1335–L1347.CrossRefGoogle Scholar
  77. 77.
    Muzykantov V.R. 2005. Biomedical aspects of targeted delivery of drugs to pulmonary endothelium. Expert Opin. Drug Deliv. 5, 909–926.CrossRefGoogle Scholar
  78. 78.
    Chrastina A., Valadon P., Massey K.A., Schnitzer J.E. 2010. Lung vascular targeting using antibody to aminipeptidase P: CT-SPECT imaging, biodistribution and pharmacokinetic analysis. J. Vasc. Res. 47, 531–543.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Somia N., Verma I.M. 2000. Gene therapy: Trials and tribulations. Nat. Rev. Genet. 2, 91–99.CrossRefGoogle Scholar
  80. 80.
    Reynolds P.N., Zinn K.R., Gavrilyuk V.D., et al. 2000. A targetable, injectable adenoviral vector for selective gene delivery to pulmonary endothelium in vivo. Mol. Ther. 2, 562–578.CrossRefPubMedGoogle Scholar
  81. 81.
    Muzykantov V.R., Barnathan E., Atochina E., Fisher A. 1996. Targeting of conjugated plasminogen activators to the pulmonary vasculature. J. Pharm. Exp. Ther. 279, 1026–1034.Google Scholar
  82. 82.
    Muzykantov V.R., Atochina E.N., Ischiropoulos H., et al. 1996. Immunotargeting of antioxidant enzymes to the pulmonary endothelium. Proc. Natl. Acad. Sci. U. S. A. 93, 5213–5218.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Atochina E.N., Balyasnikova I.V., Danilov S.M., et al. 1998. Catalasetargeting to the surface endothelial antigens protects pulmonary vasculature against oxidative insult. Am. J. Physiol. Lung Physiol. 275, L806–L817.CrossRefGoogle Scholar
  84. 84.
    Nowak K., Weih S., Metzger R., et al. 2007. Immunotargeting of catalase to lung endothelium via anti-ACE antibodies attenuates ischemia-reperfusion injury of the lung in vivo. Am. J. Physiol. Lung Physiol. 293, L162–L169.CrossRefGoogle Scholar
  85. 85.
    Nowak K., Hanusch C., Nicksch K., et al. 2010. Preischemic conditioning of the pulmonary endothelium by immunotargeting of catalase via angiotensin-converting enzyme antibodies. Eur. J. Cardiothorac. Surg. 37, 859–863.CrossRefPubMedGoogle Scholar
  86. 86.
    Reynolds P.N., Nicklin S.A., Kaliberova L., et al. 2001. Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo. Nat. Biotechnol. 19, 838–842.CrossRefPubMedGoogle Scholar
  87. 87.
    Miller W.H., Brosnan M.J., Graham D., et al. 2005. Targeting endothelial cells with adenovirus expressing nitric oxide synthase prevent elevation of blood pressure in stroke prone spontaneously hypertensive rats. Mol. Ther. 12, 321–327.CrossRefPubMedGoogle Scholar
  88. 88.
    Reynolds A.M., Xia M., Holmes M.D., et al. 2007. Bone morphogenetic protein type 2 receptor (BMPR2) gene therapy attenuates hypoxic pulmonary hypertension. Am. J. Physiol. Lung Physiol. 292, L1182–L1192.CrossRefGoogle Scholar
  89. 89.
    Reynolds A.M., Holmes M.D., Danilov S.M., Reynolds P.N. et al. 2012. Targeted delivery of bone morpho-genetic protein receptor type-2 attenuates pulmonary hypertension in rats. Eur. Resp. J. 39, 329–343.CrossRefGoogle Scholar
  90. 90.
    Morecroft I., White K., Caruso P., et al. 2012. Gene therapy by targeted adenovirus-mediated knockdown of pulmonary endothelial Tph1 attenuates hypoxia-induced pulmonary hypertension. Mol. Ther1667. 20, 1516–1528 CrossRefGoogle Scholar
  91. 91.
    United Network for Organ Sharing Scientific Registry Data.
  92. 92.
    Chiu M.L., Gilliland G.L. 2016. Engineering antibody therapeutics. Curr. Opin. Struct. Biol. 38, 163–173.CrossRefPubMedGoogle Scholar
  93. 93.
    Balyasnikova I.V., Berestetskaya Y.V., Visintine D.J., et al. 2010. Cloning and characterization of a single-chain fragment of monoclonal antibody 9B9 for targeting angiotensin-converting enzyme. Microvasc. Res. 80, 355–364.CrossRefPubMedGoogle Scholar
  94. 94.
    Bruggemann M., Osborn M.J., Ma B., et al. 2015. Human antibody production in transgenic animals. Arch. Immunol. Ther. Exp. (Warszawa). 63, 101–108.CrossRefGoogle Scholar
  95. 95.
    Paduch M., Koide A., Uysal S., et al. 2013. Generating conformation-specific synthetic antibodies to trap proteins in selected functional states. Methods. 60, 3–14.CrossRefPubMedGoogle Scholar
  96. 96.
    Yakimenko E.F., Yazova A.K., Goussev A.I., Abelev G.I. 2003. New approaches for the detection and characterization of alpha-fetoprotein epitope variants. Tumour Biol. 24, 1–8.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.University of Illinois at ChicagoChicagoUSA
  2. 2.Arizona UniversityTucsonUSA
  3. 3.Medical Scientific and Educational Center of Moscow State UniversityMoscowRussia

Personalised recommendations