Molecular Biology

, Volume 51, Issue 5, pp 748–758 | Cite as

Proteome of the human HaCaT keratinocytes: Identification of the oxidative stress proteins after sodium dodecyl sulpfate exposur

  • N. A. Petushkova
  • A. L. Rusanov
  • V. G. Zgoda
  • M. A. Pyatnitskiy
  • O. V. Larina
  • K. V. Nakhod
  • N. G. Luzgina
  • A. V. Lisitsa
Molecular Cell Biology


Oxidative stress is a universal response of the skin cell damage of various origins. Sodium dodecyl sulfate (SDS, sodium lauryl sulfate) is an anionic surfactant commonly used as an emulsifying detergent in household cleaners. Sodium dodecyl sulfate is the reference compound for testing toxicity on cellular skin models. The effect of sodium dodecyl sulfate in sub toxic dose 25 μg/mL during 48 h on the protein profile of human keratinocytes HaCaT was studied by tandem mass spectrometry with electrospray ionization. In total, 1064 proteins were found in immortalized human keratinocytes HaCaT, of which about 80% were identified by two or more peptides. The change of the 217 proteins content was revealed, among them 39 according to Gene Ontology are associated with oxidative stress. It has been found that sodium dodecyl sulfate leads to a decrease in the number of proteins/peptides containing carboxymethylated and/or carboxyethylated lysine. We concluded about the promising of the cells redox-balance analysis at testing chemicals in the doses, which do not lead to a decrease in their viability. Possible involvement of sodium dodecyl sulfate in the development of cutaneous neoplasia is discussed.


human keratinocytes HaCaT liquid chromatography tandem mass spectrometry sodium dodecyl sulphate oxidative stress 



small interfering RNA


viral suppressor of RNA silencing


RNA-induced silencing complex


post-transcriptional gene silencing


transcriptional gene silencing


cotton leaf curl Multan betasatellite


Dicer-like (proteins)


double-stranded RNA


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Toyokuni S., Okamoto K., Yodoi J., Hiai H. 1995. Persistent oxidative stress in cancer. FEBS Lett. 358, 1–3.CrossRefPubMedGoogle Scholar
  2. 2.
    Marnett L.J. 2000. Oxyradicals and DNA damage. Carcinogenesis. 21, 361–370.CrossRefPubMedGoogle Scholar
  3. 3.
    Perluigi M., Di Domenico F., Blarzino C., et al. 2010. Effects of UVB-induced oxidative stress on protein expression and specific protein oxidation in normal human epithelial keratinocytes: A proteomic approach. Proteome Sci. 8, 13.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hoh A., Maier K., Dreher R.M. 1987. Multilayered keratinocyte culture used for in vitro toxicology. Mol. Toxicol. 1, 537–546.PubMedGoogle Scholar
  5. 5.
    Gibbs S. 2009. In vitro irritation models and immune reactions. Skin. Pharmacol. Physiol. 22, 103–113.CrossRefPubMedGoogle Scholar
  6. 6.
    Swalwell H., Latimer J., Haywood R.M., Birch-Machin M.A. 2012. Investigating the role of melanin in UVA/UVB-and hydrogen peroxide-induced cellular and mitochondrial OS production and mitochondrial DNA damage in human melanoma cells. Free Radic. Biol. Med. 52, 626–634.CrossRefPubMedGoogle Scholar
  7. 7.
    Taddei M.L., Giannoni E., Raugei G., et al. 2012. Mitochondrial oxidative stress due to complex I dysfunction promotes fibroblast activation and melanoma cell. J. Signal Transduct. 2012, 684592.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Aruoma O.I. 1998. Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil Chem. Soc. 75, 199.CrossRefGoogle Scholar
  9. 9.
    Pugliese P.T. 1995. The skin, free radicals, and oxidative stress. Dermatol. Nurs. 7 (6), 361–369. quiz 370–371.PubMedGoogle Scholar
  10. 10.
    Sakai M., Imai T., Ohtake H., et al. 1998. Cytotoxicity of absorption enhancers in Caco-2 cell monolayers. J. Pharm. Pharmacol. 50, 1101–1108.CrossRefPubMedGoogle Scholar
  11. 11.
    Sanjay K., Thejasenuo J.K., Tsipila T. 2014. Toxicological effects of sodium dodecyl sulfate. J. Chem. Pharm. Res. 6, 1488–1492.Google Scholar
  12. 12.
    Lindberg M., Forslind B., Sagstrom S., et al. 1992. Elemental changes in guinea pig epidermis at repeated exposure to sodium lauryl sulfate. Acta Dermato-Venereol. 72, 428–431.Google Scholar
  13. 13.
    Miura Y., Hisaki H., Fukushima B., et al. 1989. Detergent induced changes in serum lipid composition in rats. Lipids. 24, 915–918.CrossRefPubMedGoogle Scholar
  14. 14.
    van de Sandt J.J., Bos T.A., Rutten A.A. 1995. Epidermal cell proliferation and terminal differentiation in skin organ culture after topical exposure to sodium dodecyl sulphate. In Vitro Cell. Dev. Biol.—Animal. 31, 761–766.CrossRefGoogle Scholar
  15. 15.
    Törmä H., Lindberg M., Berne B. 2008. Skin barrier disruption by sodium lauryl sulfate-exposure alters the expressions of involucrin, transglutaminase 1, profilaggrin, and kallikreins during the repair phase in human skin in vivo. J. Invest. Dermatol. 128, 1212–1219.CrossRefPubMedGoogle Scholar
  16. 16.
    Abruzzo A., Armenise N., Bigucci F., et al. 2017. Surfactants from itaconic acid: Toxicity to HaCaT keratinocytes in vitro, micellar solubilization, and skin permeation enhancement of hydrocortisone. Int. J. Pharm. 524, 9–15. doi 10.1016/j.ijpharm.2017.03.056CrossRefPubMedGoogle Scholar
  17. 17.
    Ideker T., Thorsson V., Ranish J.A., et al. 2001. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science. 292, 929–934.CrossRefPubMedGoogle Scholar
  18. 18.
    Udensi U.K., Tackett A.J., Byrum S., et al. 2014. Proteomics-based identification of differentially abundant proteins from human keratinocytes exposed to arsenic trioxide. J. Proteom. Bioinform. 7, 166–178.CrossRefGoogle Scholar
  19. 19.
    Rusanov A.L., Luzgina N.G., Lisitsa A.V. 2017. Cytotoxicity of SDS on HaCaT keratinocytes: Comparative analysis of different methods for cell viability assessment. Bull. Exp. Biol. Med. 2, 256–260.Google Scholar
  20. 20.
    Walker J.M. 1994. The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol. Biol. 32, 5–8.PubMedGoogle Scholar
  21. 21.
    Petushkova N.A., Zgoda V.G., Pyatnitskiy M.A., et al. 2017. Post-translational modifications of FDA-approved plasma biomarkers in glioblastoma samples. PLOS ONE. 12 (5), e0177427.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kisrieva Y.S., Petushkova N.A., Samenkova N.F., et al. 2016. Comparative proteome analysis of blood plasma of patients with early-stage chronic cerebral ischemia. Biomed. Khim. 62, 599–602.CrossRefPubMedGoogle Scholar
  23. 23.
    Eden E., Navon R., Steinfeld I., et al. 2009. GOrilla: A tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinform. 10, 48.CrossRefGoogle Scholar
  24. 24.
    Requena J.R., Stadtman E.R. 1999. Conversion of lysine to N(epsilon)-(carboxymethyl)lysine increases susceptibility of proteins to metal-catalyzed oxidation. Biochem. Biophys. Res. Commun. 264, 207–211.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang S., Zhang S., Yin J., et al. 2014. Jacarelhyperol A induced apoptosis in leukaemia cancer cell through inhibition the activity of Bcl-2 proteins. BMC Cancer. 14, 689.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Udensi U.K., Graham-Evans B.E., Rogers C.S., et al. 2011. Cytotoxicity patterns of arsenic trioxide exposure on HaCaT keratinocytes. Clin. Cosmet. Investig. Dermatol. 4, 183–190.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Sekharam M., Cunnick J.M., Wu J. 2000. Involvement of lipoxygenase in lysophosphatidic acid-stimulated hydrogen peroxide release in human HaCaT keratinocytes. Biochem. J. 346, 751–758.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Naz S., Ranganathan P., Bodapati P., et al. 2012. Regulation of S100A2 expreßsion by TGF-ß-induced MEK/ERK signalling and its role in cell migration/invasion. Biochem. J. 447, 81–91.CrossRefPubMedGoogle Scholar
  29. 29.
    Burlando B., Parodi A., Volante A., et al. 2008. Comparison of the irritation potentials of Boswellia serrata gum resin and of acetyl-11-keto-beta-boswellic acid by in vitro cytotoxicity tests on human skin-derived cell lines. Toxicol. Lett. 177, 144–149.CrossRefPubMedGoogle Scholar
  30. 30.
    OECD. 2013. OECD Guideline for the Testing of Chemicals, 439.Google Scholar
  31. 31.
    Rolfs F., Huber M., Gruber F., et al. 2013. Dual role of the antioxidant enzyme peroxiredoxin 6 in skin carcinogenesis. Cancer Res. 73, 3460–3469.CrossRefPubMedGoogle Scholar
  32. 32.
    Kümin A., Huber C., Rülicke T., et al. 2006. Peroxiredoxin 6 is a potent cytoprotective enzyme in the epidermis. Am. J. Pathol. 169, 1194–1205.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Maciver S.K., Hussey P.J. 2002. The ADF/cofilin family: Actin-remodeling proteins. Genome Biol. 3, 1–12.CrossRefGoogle Scholar
  34. 34.
    Zhang Q., Dai T., Zhang L., et al. 2011. Identification of potential biomarkers for predicting acute dermal irritation by proteomic analysis. J. Appl. Toxicol. 31, 762–772.CrossRefPubMedGoogle Scholar
  35. 35.
    Parkinson E., Skipp P., Aleksic M., et al. 2014. Proteomic analysis of the human skin proteome after in vivo treatment with sodium dodecyl sulphate. PLoS ONE. 9, e97772.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Törmä H., Geijer S., Gester T., et al. 2006. Variations in the mRNA expression of inflammatory mediators, markers of differentiation and lipid-metabolizing enzymes caused by sodium lauryl sulphate in cultured human keratinocytes. Toxicol. in vitro. 20, 472–479.CrossRefPubMedGoogle Scholar
  37. 37.
    Brennan-Crispi D.M., Hossain C., et al. 2015. Crosstalk between Desmoglein 2 and Patched 1 accelerates chemical-induced skin tumorigenesis. Oncotarget. 6, 8593–8605.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Udensi U.K., Tchounwou P.B. 2016. Oxidative stress in prostate hyperplasia and carcinogenesis. J. Exp. Clin. Cancer Res. 35, 139.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Aden N., Shiwen X., Aden D., et al. 2008. Proteomic analysis of scleroderma lesional skin reveals activated wound healing phenotype of epidermal cell layer. Rheumatology (Oxford). 47, 1754–1760.CrossRefPubMedGoogle Scholar
  40. 40.
    Delgado-Andrade C. 2016. Carboxymethyl-lysine: Thirty years of investigation in the field of AGE formation. Food Funct. 7, 46–57.CrossRefPubMedGoogle Scholar
  41. 41.
    Greifenhagen U., Frolov A., Blüher M., et al. 2016. Site-specific analysis of advanced glycation end products in plasma proteins of type 2 diabetes mellitus patients. Anal. Bioanal. Chem. 408, 5557–5566.CrossRefPubMedGoogle Scholar
  42. 42.
    Rabbani N., Ashour A., Thornalley P.J. 2016. Mass spectrometric determination of early and advanced glycation in biology. Glycoconj. J. 33, 553–568.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Nass N., Ignatov A., Andreas L., et al. 2017. Accumulation of the advanced glycation end product carboxymethyl lysine in breast cancer is positively associated with estrogen receptor expression and unfavorable prognosis in estrogen receptor-negative cases. Histochem. Cell Biol. 147, 625–634.CrossRefPubMedGoogle Scholar
  44. 44.
    Bachmeier B.E., Nerlich A.G., Rohrbach H., et al. 2008. Maillard products as biomarkers in cancer. Ann. NY Acad. Sci. 1126, 283–287.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • N. A. Petushkova
    • 1
  • A. L. Rusanov
    • 2
  • V. G. Zgoda
    • 1
  • M. A. Pyatnitskiy
    • 1
  • O. V. Larina
    • 1
  • K. V. Nakhod
    • 1
  • N. G. Luzgina
    • 1
  • A. V. Lisitsa
    • 1
  1. 1.Institute of Biomedical ChemistryMoscowRussia
  2. 2.Research and Manufacturing Association “Perspectiva”NovosibirskRussia

Personalised recommendations