Molecular Biology

, Volume 52, Issue 2, pp 182–189 | Cite as

Role of the Nucleolus in Rearrangements of the IGH Locus

  • O. V. Iarovaia
  • E. S. Ioudinkova
  • S. V. Razin
  • Y. S. Vassetzky


The review summarizes the results from a series of studies focusing on the role that the nucleolus plays in maturation of the IGH locus and the choice of its partner genes in leukemia-associated translocations. The role of nuclear compartmentalization and nuclear localization of translocated oncogenes in ectopic activation of their transcription is discussed.


compartmentalization of the nucleus spatial organization of the genome IGH locus leukemiaassociated translocations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ulianov S.V., Gavrilov A.A., Razin S.V. 2015. Nuclear compartments, genome folding, and enhancer-promoter communication. Int. Rev. Cell. Mol. Biol. 315, 183–244.CrossRefPubMedGoogle Scholar
  2. 2.
    Meldi L., Brickner J.H. 2011. Compartmentalization of the nucleus. Trends Cell. Biol. 21 (12), 701–708.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Spector D.L., Lamond A.I. 2011. Nuclear speckles. Cold Spring Harb. Perspect. Biol. 3 (2).Google Scholar
  4. 4.
    Bernardi R., Pandolfi P.P. 2007. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat. Rev. Mol. Cell. Biol. 8 (12), 1006–1016.CrossRefPubMedGoogle Scholar
  5. 5.
    Nizami Z.F., Deryusheva S., Gall J.G. 2010. Cajal bodies and histone locus bodies in Drosophila and Xenopus. Cold Spring Harb. Symp. Quant. Biol. 75, 313–320.CrossRefPubMedGoogle Scholar
  6. 6.
    Pirrotta V., Li H.B. 2012. A view of nuclear Polycomb bodies. Curr. Opin. Genet. Dev. 22 (2), 101–109.CrossRefPubMedGoogle Scholar
  7. 7.
    Labrador M., Corces V.G. 2002. Setting the boundaries of chromatin domains and nuclear organization. Cell. 111 (2), 151–154.CrossRefPubMedGoogle Scholar
  8. 8.
    Faro-Trindade I., Cook P.R. 2006. Transcription factories: Structures conserved during differentiation and evolution. Biochem. Soc. Trans. 34 (6), 1133–1137.CrossRefPubMedGoogle Scholar
  9. 9.
    Hozak P., Cook P.R. 1994. Replication factories. Trends Cell. Biol. 4 (2), 48–52.CrossRefPubMedGoogle Scholar
  10. 10.
    Solovei I., Thanisch K., Feodorova Y. 2016. How to rule the nucleus: Divide et impera. Curr. Opin. Cell. Biol. 40, 47–59.CrossRefPubMedGoogle Scholar
  11. 11.
    Sutton E. 1940. The structure of salivary gland chromosomes of Drosophila melanogaster in exchanges between euchromatin and heterochromatin. Genetics. 25 (5), 534–540.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Croft J.A., Bridger J.M., Boyle S., et al. 1999. Differences in the localization and morphology of chromosomes in the human nucleus. J. Cell Biol. 145 (6), 1119–1131.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Schardin M., Cremer T., Hager H.D., et al. 1985. Specific staining of human chromosomes in Chinese hamster–man hybrid cell lines demonstrates interphase chromosome territories. Hum. Genet. 71 (4), 281–287.CrossRefPubMedGoogle Scholar
  14. 14.
    Nguyen H.Q., Bosco G. 2015. Gene positioning effects on expression in eukaryotes. Annu. Rev. Genet. 49, 627–646.CrossRefPubMedGoogle Scholar
  15. 15.
    Leotta, C.G., Federico C., Brundo M.V., et al. 2014. HLXB9 gene expression, and nuclear location during in vitro neuronal differentiation in the SK-N-BE neuroblastoma cell line. PLOS ONE. 9 (8), e105481.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Khanna N., Hu Y., Belmont A.S. 2014. HSP70 transgene directed motion to nuclear speckles facilitates heat shock activation. Curr. Biol. 24 (10), 1138–1144.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lee H.Y., Johnson K.D., Boyer M.E., et al. 2011. Relocalizing genetic loci into specific subnuclear neighborhoods. J. Biol. Chem. 286 (21), 18834–18844.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Szczerbal I., Foster H.A., Bridger J.M. 2009. The spatial repositioning of adipogenesis genes is correlated with their expression status in a porcine mesenchymal stem cell adipogenesis model system. Chromosoma. 118 (5), 647–663.CrossRefPubMedGoogle Scholar
  19. 19.
    Chambeyron S., Bickmore W.A. 2004. Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev. 18 (10), 1119–1130.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Saad H., Cobb J.A. 2016. A decade of understanding spatio-temporal regulation of DNA repair by the nuclear architecture. Biochem. Cell Biol. 94 (5), 433–440.CrossRefPubMedGoogle Scholar
  21. 21.
    Krawczyk P.M., Borovski T., Stap J., et al. 2012. Chromatin mobility is increased at sites of DNA doublestrand breaks. J. Cell Sci. 125 (9), 2127–2133.CrossRefPubMedGoogle Scholar
  22. 22.
    Lemaitre C., Bickmore W.A. 2015. Chromatin at the nuclear periphery and the regulation of genome functions. Histochem. Cell Biol. 144 (2), 111–122.CrossRefPubMedGoogle Scholar
  23. 23.
    Kulashreshtha M., Mehta I.S., Kumar P., et al. 2016. Chromosome territory relocation during DNA repair requires nuclear myosin 1 recruitment to chromatin mediated by Upsilon-H2AX signaling. Nucleic Acids Res. 44 (17): p. 8272–8291.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Schatz D.G., Ji Y. 2011. Recombination centres and the orchestration of V(D)J recombination. Nat. Rev. Immunol. 11 (4), 251–263.CrossRefPubMedGoogle Scholar
  25. 25.
    Di Noia J.M., Neuberger M.S. 2007. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 76, 1–22.CrossRefPubMedGoogle Scholar
  26. 26.
    Stavnezer J., Schrader C.E. 2014. IgH chain class switch recombination: Mechanism and regulation. J. Immunol. 193 (11), 5370–5378.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Stavnezer J., Guikema J.E., Schrader C.E. 2008. Mechanism and regulation of class switch recombination. Annu. Rev. Immunol. 26, 261–292.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ichii M., Oritani K., Kanakura Y. 2014. Early B lymphocyte development: Similarities and differences in human and mouse. World J. Stem Cells. 6 (4), 421–431.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zhang Y., McCord R.P., Ho Y.J., et al. 2012. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell. 148(5), 908–921.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Misteli T., Soutoglou E. 2009. The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat. Rev. Mol. Cell. Biol. 10 (4), 243–254.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Iarovaia O.V., Rubtsov M.A., Ioudinkova E.S., et al. 2014. Dynamics of double strand breaks and chromosomal translocations. Mol. Cancer. 13,249.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rubtsov M.A., Terekhov S.M., Razin S.V., Iarovaia O.V. 2008. Repositioning of ETO gene in cells treated with VP-16, an inhibitor of DNA-topoisomerase II. J. Cell. Biochem. 104 (2), 692–699.CrossRefPubMedGoogle Scholar
  33. 33.
    Kosak S.T., Skok J.A., Medina K.L., et al. 2002. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science. 296 (5565), 158–162.CrossRefPubMedGoogle Scholar
  34. 34.
    Rother M.B., Palstra R.J., Jhunjhunwala S., et al. 2016. Nuclear positioning rather than contraction controls ordered rearrangements of immunoglobulin loci. Nucleic Acids Res. 44 (1), 175–186.CrossRefPubMedGoogle Scholar
  35. 35.
    Yang Q., Riblet R., Schildkraut C.L. 2005. Sites that direct nuclear compartmentalization are near the 5' end of the mouse immunoglobulin heavy-chain locus. Mol. Cell Biol. 25 (14), 6021–6030.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Skok J.A., Brown K.E., Azuara V., et al. 2001. Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nat. Immunol. 2 (9), 848–854.CrossRefPubMedGoogle Scholar
  37. 37.
    Nemeth A., Langst G. 2011. Genome organization in and around the nucleolus. Trends Genet. 27 (4), 149–156.CrossRefPubMedGoogle Scholar
  38. 38.
    Nemeth A., Conesa A., Santoyo-Lopez J., et al. 2010. Initial genomics of the human nucleolus. PLoS Genet. 6 (3), e1000889.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zullo J.M., Demarco I.A., Piqué-Regi R., et al. 2012. DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina. Cell. 149 (7), 1474–1487.CrossRefPubMedGoogle Scholar
  40. 40.
    Razin S.V., Petrov A., Hair A., Vassetzky Y.S. 2004. Chromatin domains and territories: Flexibly rigid. Crit. Rev. Eukaryot. Gene Expr. 14 (1–2), 79–88.CrossRefPubMedGoogle Scholar
  41. 41.
    Splinter E., de Wit E., Nora E.P., et al. 2011. The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev. 25 (13), 1371–1383.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    van Koningsbruggen S., Gierlinski M., Schofield P., et al. 2010. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol. Biol. Cell. 21 (21), 3735–3748.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Allinne J., Pichugin A., Iarovaia O., et al. 2014. Perinucleolar relocalization and nucleolin as crucial events in the transcriptional activation of key genes in mantle cell lymphoma. Blood. 123 (13), 2044–2053.CrossRefPubMedGoogle Scholar
  44. 44.
    Boulon S., Westman B.J., Hutten S., et al. 2010. The nucleolus under stress. Mol. Cell. 40 (2), 216–227.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Takada H., Kurisaki A. 2015. Emerging roles of nucleolar and ribosomal proteins in cancer, development, and aging. Cell. Mol. Life Sci. 72 (21), 4015–4025.CrossRefPubMedGoogle Scholar
  46. 46.
    Carmo-Fonseca M., Mendes-Soares L., Campos I. 2000. To be or not to be in the nucleolus. Nat. Cell Biol. 2 (6), 107–112.CrossRefGoogle Scholar
  47. 47.
    Antoniali G., Lirussi L., Poletto M., Tell G. 2014. Emerging roles of the nucleolus in regulating the DNA damage response: the noncanonical DNA repair enzyme APE1/Ref-1 as a paradigmatical example. Antioxid. Redox Signal. 20 (4), 621–639.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Greco A. 2009. Involvement of the nucleolus in replication of human viruses. Rev. Med. Virol. 19 (4), 201–214.CrossRefPubMedGoogle Scholar
  49. 49.
    Arcangeletti M.C., Rodighiero I., De Conto F., et al. 2009. Modulatory effect of rRNA synthesis and ppUL83 nucleolar compartmentalization on human cytomegalovirus gene expression in vitro. J. Cell. Biochem. 108 (2), 415–423.CrossRefPubMedGoogle Scholar
  50. 50.
    Leung A.K., Trinkle-Mulcahy L., Wah Lam Y., et al. 2006. NOPdb: Nucleolar Proteome Database. Nucleic Acids Res. 34 (Database issue), D218–D220.CrossRefPubMedGoogle Scholar
  51. 51.
    Bensaddek D., Nicolas A., Lamond A.I. 2016. Quantitative proteomic analysis of the human nucleolus. Meth. Mol. Biol. 1455, 249–262.CrossRefGoogle Scholar
  52. 52.
    Spanopoulou E., Cortes P., Shih C., et al. 1995. Localization, interaction, and RNA binding properties of the V(D)J recombination-activating proteins RAG1 and RAG2. Immunity. 3 (6), 715–726.CrossRefPubMedGoogle Scholar
  53. 53.
    Hu Y., Ericsson I., Torseth K., et al. 2013. A combined nuclear and nucleolar localization motif in activationinduced cytidine deaminase (AID) controls immunoglobulin class switching. J. Mol. Biol. 425 (2), 424–443.CrossRefPubMedGoogle Scholar
  54. 54.
    Laffleur B., Denis-Lagache N., Péron S., et al. 2014. AID-induced remodeling of immunoglobulin genes and B cell fate. Oncotarget. 5 (5), 1118–1131.CrossRefPubMedGoogle Scholar
  55. 55.
    Cortizas E.M., Zahn A., Hajjar M.E., et al. 2013. Alternative end-joining and classical nonhomologous endjoining pathways repair different types of double-strand breaks during class-switch recombination. J. Immunol. 191 (11), 5751–5763.CrossRefPubMedGoogle Scholar
  56. 56.
    Poltoratsky V., Heacock M., Kissling G.E., et al. 2010. Mutagenesis dependent upon the combination of activation-induced deaminase expression and a doublestrand break. Mol. Immunol. 48 (1–3), 164–170.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Teng G., Schatz D.G. 2015. Regulation and evolution of the RAG recombinase. Adv. Immunol. 128, 1–39.CrossRefPubMedGoogle Scholar
  58. 58.
    Roth D.B. 2014. V(D)J recombination: Mechanism, errors, and fidelity. Microbiol. Spectr. 2 (6).Google Scholar
  59. 59.
    Gazumyan A., Bothmer A., Klein I.A., et al. 2012. Activation-induced cytidine deaminase in antibody diversification and chromosome translocation. Adv. Cancer Res. 113, 167–190.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Robbiani D.F., Bunting S., Feldhahn N., et al. 2009. AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations. Mol. Cell. 36 (4), 631–641.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Faili A., Aoufouchi S., Flatter E., et al. 2002. Induction of somatic hypermutation in immunoglobulin genes is dependent on DNA polymerase iota. Nature. 419 (6910), 944–947.CrossRefPubMedGoogle Scholar
  62. 62.
    Le Gallou S., Caron G., Delaloy C., et al. 2012. IL-2 requirement for human plasma cell generation: Coupling differentiation and proliferation by enhancing MAPK-ERK signaling. J. Immunol. 189 (1), 161–173.CrossRefPubMedGoogle Scholar
  63. 63.
    Delpy L., Sirac C., Le Morvan C., et al. 2004. Transcription-dependent somatic hypermutation occurs at similar levels on functional and nonfunctional rearranged IgH alleles. J. Immunol. 173 (3), 1842–1848.CrossRefPubMedGoogle Scholar
  64. 64.
    Okazaki I.M., Kotani A., Honjo T. 2007. Role of AID in tumorigenesis. Adv. Immunol. 94, 245–273.CrossRefPubMedGoogle Scholar
  65. 65.
    Klein G. 1983. Specific chromosomal translocations and the genesis of B-cell-derived tumors in mice and men. Cell. 32 (2), 311–315.CrossRefPubMedGoogle Scholar
  66. 66.
    Decaudin D. 2002. Mantle cell lymphoma: A biological and therapeutic paradigm. Leuk. Lymphoma. 43 (4), 773–781.CrossRefPubMedGoogle Scholar
  67. 67.
    Rocha P.P., Skok J.A. 2013. The origin of recurrent translocations in recombining lymphocytes: A balance between break frequency and nuclear proximity. Curr. Opin. Cell Biol. 25 (3), 365–371.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Parada L.A., McQueen P.G., Misteli T. 2004. Tissuespecific spatial organization of genomes. Genome Biol. 5 (7), R44.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Roix J.J., McQueen P.G., Munson P.J., et al. 2003. Spatial proximity of translocation-prone gene loci in human lymphomas. Nat. Genet. 34 (3), 287–291.CrossRefPubMedGoogle Scholar
  70. 70.
    Osborne C.S., Chakalova L., Mitchell J.A., et al. 2007. Myc dynamically and preferentially relocates to a tran scription factory occupied by Igh. PLoS Biol. 5 (8), e192.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Hu Q., Kwon Y.S., Nunez E., et al. 2008. Enhancing nuclear receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules. Proc. Natl. Acad. Sci. U. S. A. 105 (49), 19199–19204.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Geli V., Lisby M. 2015. Recombinational DNA repair is regulated by compartmentalization of DNA lesions at the nuclear pore complex. Bioessays. 37 (12), 1287–1292.CrossRefPubMedGoogle Scholar
  73. 73.
    Lisby M., Mortensen U.H., Rothstein R. 2003. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat. Cell Biol. 5 (6), 572–577.CrossRefPubMedGoogle Scholar
  74. 74.
    Sklyar I., Iarovaia O.V., Gavrilov A.A., et al. 2016. Distinct patterns of colocalization of the CCND1 and CMYC genes with their potential translocation partner IGH at successive stages of B-cell differentiation. J. Cell. Biochem. 117 (7), 1506–1510.CrossRefPubMedGoogle Scholar
  75. 75.
    Strongin D.E., Groudine M., Politz J.C. 2014. Nucleolar tethering mediates pairing between the IgH and Myc loci. Nucleus. 5 (5), 474–481.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Jares P., Colomer D., Campo E. 2012. Molecular pathogenesis of mantle cell lymphoma. J. Clin. Invest. 122 (10), 3416–3423.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Bellan C., Lazzi S., Hummel M., et al. 2005. Immunoglobulin gene analysis reveals 2 distinct cells of origin for EBV-positive and EBV-negative Burkitt lymphomas. Blood. 106 (3), 1031–1036.CrossRefPubMedGoogle Scholar
  78. 78.
    Baptista M.J., Calpe E., Fernandez E., et al. 2014. Analysis of the IGHV region in Burkitt’s lymphomas supports a germinal center origin and a role for superantigens in lymphomagenesis. Leuk. Res. 38 (4), 509–515.CrossRefPubMedGoogle Scholar
  79. 79.
    Robbiani D.F., Bothmer A., Callen E., et al. 2008. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell. 135 (6), 1028–1038.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Kinoshita K., Nonaka T. 2006. The dark side of activation-induced cytidine deaminase: Relationship with leukemia and beyond. Int. J. Hematol. 83 (3), 201–207.CrossRefPubMedGoogle Scholar
  81. 81.
    Brys A., Maizels N. 1994. LR1 regulates c-myc transcription in B-cell lymphomas. Proc. Natl. Acad. Sci. U. S. A. 91 (11), 4915–4919.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Huddleson J.P., Ahmad N., Lingrel J.B. 2006. Up-regulation of the KLF2 transcription factor by fluid shear stress requires nucleolin. J. Biol. Chem. 281 (22), 15121–15128.CrossRefPubMedGoogle Scholar
  83. 83.
    Grinstein E., Du Y., Santourlidis S., et al. 2007. Nucleolin regulates gene expression in CD34-positive hematopoietic cells. J. Biol. Chem. 282 (17), 12439–12449.CrossRefPubMedGoogle Scholar
  84. 84.
    Chen Y.L., Liu C.D., Cheng C.P., et al. 2014. Nucleolin is important for Epstein-Barr virus nuclear antigen 1-mediated episome binding, maintenance, and transcription. Proc. Natl. Acad. Sci. U. S. A. 111 (1), 243–248.CrossRefPubMedGoogle Scholar
  85. 85.
    Hanakahi L.A., Maizels N. 2000. Transcriptional activation by LR1 at the Emu enhancer and switch region sites. Nucleic Acids Res. 28 (14), 2651–2657.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Hanakahi L.A., Dempsey L.A., Li M.J., et al. 1997. Nucleolin is one component of the B cell-specific transcription factor and switch region binding protein, LR1. Proc. Natl. Acad. Sci. U. S. A. 94 (8), 3605–3610.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • O. V. Iarovaia
    • 1
    • 2
    • 4
  • E. S. Ioudinkova
    • 1
    • 2
    • 4
  • S. V. Razin
    • 1
    • 2
    • 3
  • Y. S. Vassetzky
    • 2
    • 3
    • 4
  1. 1.Institute of Gene BiologyRussian Academy of SciencesMoscowRussia
  2. 2.LIA1066 “Laboratoire franco-russe de recherche en oncologie”VillejuifFrance
  3. 3.Biological FacultyMoscow State UniversityMoscowRussia
  4. 4.CNRS UMR8126, Universite Paris Sud 11, Institut de Cancerologie Gustave RoussyVillejuifFrance

Personalised recommendations