Role of the Nucleolus in Rearrangements of the IGH Locus
Reviews
First Online:
Received:
Accepted:
- 13 Downloads
Abstract
The review summarizes the results from a series of studies focusing on the role that the nucleolus plays in maturation of the IGH locus and the choice of its partner genes in leukemia-associated translocations. The role of nuclear compartmentalization and nuclear localization of translocated oncogenes in ectopic activation of their transcription is discussed.
Keywords
compartmentalization of the nucleus spatial organization of the genome IGH locus leukemiaassociated translocationsPreview
Unable to display preview. Download preview PDF.
References
- 1.Ulianov S.V., Gavrilov A.A., Razin S.V. 2015. Nuclear compartments, genome folding, and enhancer-promoter communication. Int. Rev. Cell. Mol. Biol. 315, 183–244.CrossRefPubMedGoogle Scholar
- 2.Meldi L., Brickner J.H. 2011. Compartmentalization of the nucleus. Trends Cell. Biol. 21 (12), 701–708.CrossRefPubMedPubMedCentralGoogle Scholar
- 3.Spector D.L., Lamond A.I. 2011. Nuclear speckles. Cold Spring Harb. Perspect. Biol. 3 (2).Google Scholar
- 4.Bernardi R., Pandolfi P.P. 2007. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat. Rev. Mol. Cell. Biol. 8 (12), 1006–1016.CrossRefPubMedGoogle Scholar
- 5.Nizami Z.F., Deryusheva S., Gall J.G. 2010. Cajal bodies and histone locus bodies in Drosophila and Xenopus. Cold Spring Harb. Symp. Quant. Biol. 75, 313–320.CrossRefPubMedGoogle Scholar
- 6.Pirrotta V., Li H.B. 2012. A view of nuclear Polycomb bodies. Curr. Opin. Genet. Dev. 22 (2), 101–109.CrossRefPubMedGoogle Scholar
- 7.Labrador M., Corces V.G. 2002. Setting the boundaries of chromatin domains and nuclear organization. Cell. 111 (2), 151–154.CrossRefPubMedGoogle Scholar
- 8.Faro-Trindade I., Cook P.R. 2006. Transcription factories: Structures conserved during differentiation and evolution. Biochem. Soc. Trans. 34 (6), 1133–1137.CrossRefPubMedGoogle Scholar
- 9.Hozak P., Cook P.R. 1994. Replication factories. Trends Cell. Biol. 4 (2), 48–52.CrossRefPubMedGoogle Scholar
- 10.Solovei I., Thanisch K., Feodorova Y. 2016. How to rule the nucleus: Divide et impera. Curr. Opin. Cell. Biol. 40, 47–59.CrossRefPubMedGoogle Scholar
- 11.Sutton E. 1940. The structure of salivary gland chromosomes of Drosophila melanogaster in exchanges between euchromatin and heterochromatin. Genetics. 25 (5), 534–540.PubMedPubMedCentralGoogle Scholar
- 12.Croft J.A., Bridger J.M., Boyle S., et al. 1999. Differences in the localization and morphology of chromosomes in the human nucleus. J. Cell Biol. 145 (6), 1119–1131.CrossRefPubMedPubMedCentralGoogle Scholar
- 13.Schardin M., Cremer T., Hager H.D., et al. 1985. Specific staining of human chromosomes in Chinese hamster–man hybrid cell lines demonstrates interphase chromosome territories. Hum. Genet. 71 (4), 281–287.CrossRefPubMedGoogle Scholar
- 14.Nguyen H.Q., Bosco G. 2015. Gene positioning effects on expression in eukaryotes. Annu. Rev. Genet. 49, 627–646.CrossRefPubMedGoogle Scholar
- 15.Leotta, C.G., Federico C., Brundo M.V., et al. 2014. HLXB9 gene expression, and nuclear location during in vitro neuronal differentiation in the SK-N-BE neuroblastoma cell line. PLOS ONE. 9 (8), e105481.CrossRefPubMedPubMedCentralGoogle Scholar
- 16.Khanna N., Hu Y., Belmont A.S. 2014. HSP70 transgene directed motion to nuclear speckles facilitates heat shock activation. Curr. Biol. 24 (10), 1138–1144.CrossRefPubMedPubMedCentralGoogle Scholar
- 17.Lee H.Y., Johnson K.D., Boyer M.E., et al. 2011. Relocalizing genetic loci into specific subnuclear neighborhoods. J. Biol. Chem. 286 (21), 18834–18844.CrossRefPubMedPubMedCentralGoogle Scholar
- 18.Szczerbal I., Foster H.A., Bridger J.M. 2009. The spatial repositioning of adipogenesis genes is correlated with their expression status in a porcine mesenchymal stem cell adipogenesis model system. Chromosoma. 118 (5), 647–663.CrossRefPubMedGoogle Scholar
- 19.Chambeyron S., Bickmore W.A. 2004. Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev. 18 (10), 1119–1130.CrossRefPubMedPubMedCentralGoogle Scholar
- 20.Saad H., Cobb J.A. 2016. A decade of understanding spatio-temporal regulation of DNA repair by the nuclear architecture. Biochem. Cell Biol. 94 (5), 433–440.CrossRefPubMedGoogle Scholar
- 21.Krawczyk P.M., Borovski T., Stap J., et al. 2012. Chromatin mobility is increased at sites of DNA doublestrand breaks. J. Cell Sci. 125 (9), 2127–2133.CrossRefPubMedGoogle Scholar
- 22.Lemaitre C., Bickmore W.A. 2015. Chromatin at the nuclear periphery and the regulation of genome functions. Histochem. Cell Biol. 144 (2), 111–122.CrossRefPubMedGoogle Scholar
- 23.Kulashreshtha M., Mehta I.S., Kumar P., et al. 2016. Chromosome territory relocation during DNA repair requires nuclear myosin 1 recruitment to chromatin mediated by Upsilon-H2AX signaling. Nucleic Acids Res. 44 (17): p. 8272–8291.CrossRefPubMedPubMedCentralGoogle Scholar
- 24.Schatz D.G., Ji Y. 2011. Recombination centres and the orchestration of V(D)J recombination. Nat. Rev. Immunol. 11 (4), 251–263.CrossRefPubMedGoogle Scholar
- 25.Di Noia J.M., Neuberger M.S. 2007. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 76, 1–22.CrossRefPubMedGoogle Scholar
- 26.Stavnezer J., Schrader C.E. 2014. IgH chain class switch recombination: Mechanism and regulation. J. Immunol. 193 (11), 5370–5378.CrossRefPubMedPubMedCentralGoogle Scholar
- 27.Stavnezer J., Guikema J.E., Schrader C.E. 2008. Mechanism and regulation of class switch recombination. Annu. Rev. Immunol. 26, 261–292.CrossRefPubMedPubMedCentralGoogle Scholar
- 28.Ichii M., Oritani K., Kanakura Y. 2014. Early B lymphocyte development: Similarities and differences in human and mouse. World J. Stem Cells. 6 (4), 421–431.CrossRefPubMedPubMedCentralGoogle Scholar
- 29.Zhang Y., McCord R.P., Ho Y.J., et al. 2012. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell. 148(5), 908–921.CrossRefPubMedPubMedCentralGoogle Scholar
- 30.Misteli T., Soutoglou E. 2009. The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat. Rev. Mol. Cell. Biol. 10 (4), 243–254.CrossRefPubMedPubMedCentralGoogle Scholar
- 31.Iarovaia O.V., Rubtsov M.A., Ioudinkova E.S., et al. 2014. Dynamics of double strand breaks and chromosomal translocations. Mol. Cancer. 13,249.CrossRefPubMedPubMedCentralGoogle Scholar
- 32.Rubtsov M.A., Terekhov S.M., Razin S.V., Iarovaia O.V. 2008. Repositioning of ETO gene in cells treated with VP-16, an inhibitor of DNA-topoisomerase II. J. Cell. Biochem. 104 (2), 692–699.CrossRefPubMedGoogle Scholar
- 33.Kosak S.T., Skok J.A., Medina K.L., et al. 2002. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science. 296 (5565), 158–162.CrossRefPubMedGoogle Scholar
- 34.Rother M.B., Palstra R.J., Jhunjhunwala S., et al. 2016. Nuclear positioning rather than contraction controls ordered rearrangements of immunoglobulin loci. Nucleic Acids Res. 44 (1), 175–186.CrossRefPubMedGoogle Scholar
- 35.Yang Q., Riblet R., Schildkraut C.L. 2005. Sites that direct nuclear compartmentalization are near the 5' end of the mouse immunoglobulin heavy-chain locus. Mol. Cell Biol. 25 (14), 6021–6030.CrossRefPubMedPubMedCentralGoogle Scholar
- 36.Skok J.A., Brown K.E., Azuara V., et al. 2001. Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nat. Immunol. 2 (9), 848–854.CrossRefPubMedGoogle Scholar
- 37.Nemeth A., Langst G. 2011. Genome organization in and around the nucleolus. Trends Genet. 27 (4), 149–156.CrossRefPubMedGoogle Scholar
- 38.Nemeth A., Conesa A., Santoyo-Lopez J., et al. 2010. Initial genomics of the human nucleolus. PLoS Genet. 6 (3), e1000889.CrossRefPubMedPubMedCentralGoogle Scholar
- 39.Zullo J.M., Demarco I.A., Piqué-Regi R., et al. 2012. DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina. Cell. 149 (7), 1474–1487.CrossRefPubMedGoogle Scholar
- 40.Razin S.V., Petrov A., Hair A., Vassetzky Y.S. 2004. Chromatin domains and territories: Flexibly rigid. Crit. Rev. Eukaryot. Gene Expr. 14 (1–2), 79–88.CrossRefPubMedGoogle Scholar
- 41.Splinter E., de Wit E., Nora E.P., et al. 2011. The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev. 25 (13), 1371–1383.CrossRefPubMedPubMedCentralGoogle Scholar
- 42.van Koningsbruggen S., Gierlinski M., Schofield P., et al. 2010. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol. Biol. Cell. 21 (21), 3735–3748.CrossRefPubMedPubMedCentralGoogle Scholar
- 43.Allinne J., Pichugin A., Iarovaia O., et al. 2014. Perinucleolar relocalization and nucleolin as crucial events in the transcriptional activation of key genes in mantle cell lymphoma. Blood. 123 (13), 2044–2053.CrossRefPubMedGoogle Scholar
- 44.Boulon S., Westman B.J., Hutten S., et al. 2010. The nucleolus under stress. Mol. Cell. 40 (2), 216–227.CrossRefPubMedPubMedCentralGoogle Scholar
- 45.Takada H., Kurisaki A. 2015. Emerging roles of nucleolar and ribosomal proteins in cancer, development, and aging. Cell. Mol. Life Sci. 72 (21), 4015–4025.CrossRefPubMedGoogle Scholar
- 46.Carmo-Fonseca M., Mendes-Soares L., Campos I. 2000. To be or not to be in the nucleolus. Nat. Cell Biol. 2 (6), 107–112.CrossRefGoogle Scholar
- 47.Antoniali G., Lirussi L., Poletto M., Tell G. 2014. Emerging roles of the nucleolus in regulating the DNA damage response: the noncanonical DNA repair enzyme APE1/Ref-1 as a paradigmatical example. Antioxid. Redox Signal. 20 (4), 621–639.CrossRefPubMedPubMedCentralGoogle Scholar
- 48.Greco A. 2009. Involvement of the nucleolus in replication of human viruses. Rev. Med. Virol. 19 (4), 201–214.CrossRefPubMedGoogle Scholar
- 49.Arcangeletti M.C., Rodighiero I., De Conto F., et al. 2009. Modulatory effect of rRNA synthesis and ppUL83 nucleolar compartmentalization on human cytomegalovirus gene expression in vitro. J. Cell. Biochem. 108 (2), 415–423.CrossRefPubMedGoogle Scholar
- 50.Leung A.K., Trinkle-Mulcahy L., Wah Lam Y., et al. 2006. NOPdb: Nucleolar Proteome Database. Nucleic Acids Res. 34 (Database issue), D218–D220.CrossRefPubMedGoogle Scholar
- 51.Bensaddek D., Nicolas A., Lamond A.I. 2016. Quantitative proteomic analysis of the human nucleolus. Meth. Mol. Biol. 1455, 249–262.CrossRefGoogle Scholar
- 52.Spanopoulou E., Cortes P., Shih C., et al. 1995. Localization, interaction, and RNA binding properties of the V(D)J recombination-activating proteins RAG1 and RAG2. Immunity. 3 (6), 715–726.CrossRefPubMedGoogle Scholar
- 53.Hu Y., Ericsson I., Torseth K., et al. 2013. A combined nuclear and nucleolar localization motif in activationinduced cytidine deaminase (AID) controls immunoglobulin class switching. J. Mol. Biol. 425 (2), 424–443.CrossRefPubMedGoogle Scholar
- 54.Laffleur B., Denis-Lagache N., Péron S., et al. 2014. AID-induced remodeling of immunoglobulin genes and B cell fate. Oncotarget. 5 (5), 1118–1131.CrossRefPubMedGoogle Scholar
- 55.Cortizas E.M., Zahn A., Hajjar M.E., et al. 2013. Alternative end-joining and classical nonhomologous endjoining pathways repair different types of double-strand breaks during class-switch recombination. J. Immunol. 191 (11), 5751–5763.CrossRefPubMedGoogle Scholar
- 56.Poltoratsky V., Heacock M., Kissling G.E., et al. 2010. Mutagenesis dependent upon the combination of activation-induced deaminase expression and a doublestrand break. Mol. Immunol. 48 (1–3), 164–170.CrossRefPubMedPubMedCentralGoogle Scholar
- 57.Teng G., Schatz D.G. 2015. Regulation and evolution of the RAG recombinase. Adv. Immunol. 128, 1–39.CrossRefPubMedGoogle Scholar
- 58.Roth D.B. 2014. V(D)J recombination: Mechanism, errors, and fidelity. Microbiol. Spectr. 2 (6).Google Scholar
- 59.Gazumyan A., Bothmer A., Klein I.A., et al. 2012. Activation-induced cytidine deaminase in antibody diversification and chromosome translocation. Adv. Cancer Res. 113, 167–190.CrossRefPubMedPubMedCentralGoogle Scholar
- 60.Robbiani D.F., Bunting S., Feldhahn N., et al. 2009. AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations. Mol. Cell. 36 (4), 631–641.CrossRefPubMedPubMedCentralGoogle Scholar
- 61.Faili A., Aoufouchi S., Flatter E., et al. 2002. Induction of somatic hypermutation in immunoglobulin genes is dependent on DNA polymerase iota. Nature. 419 (6910), 944–947.CrossRefPubMedGoogle Scholar
- 62.Le Gallou S., Caron G., Delaloy C., et al. 2012. IL-2 requirement for human plasma cell generation: Coupling differentiation and proliferation by enhancing MAPK-ERK signaling. J. Immunol. 189 (1), 161–173.CrossRefPubMedGoogle Scholar
- 63.Delpy L., Sirac C., Le Morvan C., et al. 2004. Transcription-dependent somatic hypermutation occurs at similar levels on functional and nonfunctional rearranged IgH alleles. J. Immunol. 173 (3), 1842–1848.CrossRefPubMedGoogle Scholar
- 64.Okazaki I.M., Kotani A., Honjo T. 2007. Role of AID in tumorigenesis. Adv. Immunol. 94, 245–273.CrossRefPubMedGoogle Scholar
- 65.Klein G. 1983. Specific chromosomal translocations and the genesis of B-cell-derived tumors in mice and men. Cell. 32 (2), 311–315.CrossRefPubMedGoogle Scholar
- 66.Decaudin D. 2002. Mantle cell lymphoma: A biological and therapeutic paradigm. Leuk. Lymphoma. 43 (4), 773–781.CrossRefPubMedGoogle Scholar
- 67.Rocha P.P., Skok J.A. 2013. The origin of recurrent translocations in recombining lymphocytes: A balance between break frequency and nuclear proximity. Curr. Opin. Cell Biol. 25 (3), 365–371.CrossRefPubMedPubMedCentralGoogle Scholar
- 68.Parada L.A., McQueen P.G., Misteli T. 2004. Tissuespecific spatial organization of genomes. Genome Biol. 5 (7), R44.CrossRefPubMedPubMedCentralGoogle Scholar
- 69.Roix J.J., McQueen P.G., Munson P.J., et al. 2003. Spatial proximity of translocation-prone gene loci in human lymphomas. Nat. Genet. 34 (3), 287–291.CrossRefPubMedGoogle Scholar
- 70.Osborne C.S., Chakalova L., Mitchell J.A., et al. 2007. Myc dynamically and preferentially relocates to a tran scription factory occupied by Igh. PLoS Biol. 5 (8), e192.CrossRefPubMedPubMedCentralGoogle Scholar
- 71.Hu Q., Kwon Y.S., Nunez E., et al. 2008. Enhancing nuclear receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules. Proc. Natl. Acad. Sci. U. S. A. 105 (49), 19199–19204.CrossRefPubMedPubMedCentralGoogle Scholar
- 72.Geli V., Lisby M. 2015. Recombinational DNA repair is regulated by compartmentalization of DNA lesions at the nuclear pore complex. Bioessays. 37 (12), 1287–1292.CrossRefPubMedGoogle Scholar
- 73.Lisby M., Mortensen U.H., Rothstein R. 2003. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat. Cell Biol. 5 (6), 572–577.CrossRefPubMedGoogle Scholar
- 74.Sklyar I., Iarovaia O.V., Gavrilov A.A., et al. 2016. Distinct patterns of colocalization of the CCND1 and CMYC genes with their potential translocation partner IGH at successive stages of B-cell differentiation. J. Cell. Biochem. 117 (7), 1506–1510.CrossRefPubMedGoogle Scholar
- 75.Strongin D.E., Groudine M., Politz J.C. 2014. Nucleolar tethering mediates pairing between the IgH and Myc loci. Nucleus. 5 (5), 474–481.CrossRefPubMedPubMedCentralGoogle Scholar
- 76.Jares P., Colomer D., Campo E. 2012. Molecular pathogenesis of mantle cell lymphoma. J. Clin. Invest. 122 (10), 3416–3423.CrossRefPubMedPubMedCentralGoogle Scholar
- 77.Bellan C., Lazzi S., Hummel M., et al. 2005. Immunoglobulin gene analysis reveals 2 distinct cells of origin for EBV-positive and EBV-negative Burkitt lymphomas. Blood. 106 (3), 1031–1036.CrossRefPubMedGoogle Scholar
- 78.Baptista M.J., Calpe E., Fernandez E., et al. 2014. Analysis of the IGHV region in Burkitt’s lymphomas supports a germinal center origin and a role for superantigens in lymphomagenesis. Leuk. Res. 38 (4), 509–515.CrossRefPubMedGoogle Scholar
- 79.Robbiani D.F., Bothmer A., Callen E., et al. 2008. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell. 135 (6), 1028–1038.CrossRefPubMedPubMedCentralGoogle Scholar
- 80.Kinoshita K., Nonaka T. 2006. The dark side of activation-induced cytidine deaminase: Relationship with leukemia and beyond. Int. J. Hematol. 83 (3), 201–207.CrossRefPubMedGoogle Scholar
- 81.Brys A., Maizels N. 1994. LR1 regulates c-myc transcription in B-cell lymphomas. Proc. Natl. Acad. Sci. U. S. A. 91 (11), 4915–4919.CrossRefPubMedPubMedCentralGoogle Scholar
- 82.Huddleson J.P., Ahmad N., Lingrel J.B. 2006. Up-regulation of the KLF2 transcription factor by fluid shear stress requires nucleolin. J. Biol. Chem. 281 (22), 15121–15128.CrossRefPubMedGoogle Scholar
- 83.Grinstein E., Du Y., Santourlidis S., et al. 2007. Nucleolin regulates gene expression in CD34-positive hematopoietic cells. J. Biol. Chem. 282 (17), 12439–12449.CrossRefPubMedGoogle Scholar
- 84.Chen Y.L., Liu C.D., Cheng C.P., et al. 2014. Nucleolin is important for Epstein-Barr virus nuclear antigen 1-mediated episome binding, maintenance, and transcription. Proc. Natl. Acad. Sci. U. S. A. 111 (1), 243–248.CrossRefPubMedGoogle Scholar
- 85.Hanakahi L.A., Maizels N. 2000. Transcriptional activation by LR1 at the Emu enhancer and switch region sites. Nucleic Acids Res. 28 (14), 2651–2657.CrossRefPubMedPubMedCentralGoogle Scholar
- 86.Hanakahi L.A., Dempsey L.A., Li M.J., et al. 1997. Nucleolin is one component of the B cell-specific transcription factor and switch region binding protein, LR1. Proc. Natl. Acad. Sci. U. S. A. 94 (8), 3605–3610.CrossRefPubMedPubMedCentralGoogle Scholar
Copyright information
© Pleiades Publishing, Inc. 2018