Molecular Biology

, Volume 52, Issue 2, pp 137–150 | Cite as

Functional Characterization of Septin Complexes

  • K. A. Akhmetova
  • I. N. Chesnokov
  • S. A. Fedorova
Reviews
  • 44 Downloads

Abstract

Septins belong to a family of conserved GTP-binding proteins found in majority of eukaryotic species except for higher plants. Septins form nonpolar complexes that further polymerize into filaments and associate with cell membranes, thus comprising newly acknowledged cytoskeletal system. Septins participate in a variety of cell processes and contribute to various pathophysiological states, including tumorigenesis and neurodegeneration. Here, we review the structural and functional properties of septins and the regulation of their dynamics with special emphasis on the role of septin filaments as a cytoskeletal system and its interaction with actin and microtubule cytoskeletons. We also discuss how septins compartmentalize the cell by forming local protein-anchoring scaffolds and by providing barriers for the lateral diffusion of the membrane proteins.

Keywords

septins septin complexes septin filaments septin scaffold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hartwell L.H. 1971. Genetic control of the cell division cycle in yeast: 4. Genes controlling bud emergence and cytokinesis. Exp. Cell Res. 69, 265–276.PubMedGoogle Scholar
  2. 2.
    Byers B., Goetsch L. 1976. A highly ordered ring of membrane-associated filaments in budding yeast. J. Cell Biol. 69, 717–721.PubMedGoogle Scholar
  3. 3.
    Haarer B.K., Pringle J.R. 1987. Immunofluorescence localization of the Saccharomyces cerevisiae CDC12 gene product to the vicinity of the 10-nm filaments in the mother-bud neck. Mol. Cell. Biol. 7, 3678–3687.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Kim H.B., Haarer B.K., Pringle J.R. 1991. Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: Localization of the CDC3 gene product and the timing of events at the budding site. J. Cell Biol. 112, 535–544.PubMedGoogle Scholar
  5. 5.
    Ford S.K., Pringle J.R. 1991. Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: Localization of the CDC11 gene product and the timing of events at the budding site. Dev. Genet. 12, 281–292.PubMedGoogle Scholar
  6. 6.
    Pan F., Malmberg R.L., Momany M. 2007. Analysis of septins across kingdoms reveals orthology and new motifs. BMC Evol. Biol. 7,103.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Cao L., Ding X., Yu W., et al. 2007. Phylogenetic and evolutionary analysis of the septin protein family in metazoan. FEBS Lett. 581, 5526–5532.PubMedGoogle Scholar
  8. 8.
    Leipe D.D., Wolf Y.I., Koonin E.V., et al. 2002. Classification and evolution of P-loop GTPases and related ATPases. J. Mol. Biol. 317, 41–72.PubMedGoogle Scholar
  9. 9.
    Mostowy S., Cossart P. 2012. Septins: The fourth component of the cytoskeleton. Nat. Rev. Mol. Cell Biol. 13, 183–194.PubMedGoogle Scholar
  10. 10.
    Saarikangas J., Barral Y. 2011. The emerging functions of septins in metazoans. EMBO Rep. 12, 1118–1126.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Connolly D., Abdesselam I., Verdier-Pinard P., et al. 2011. Septin roles in tumorigenesis. Biol. Chem. 392, 725–738.PubMedGoogle Scholar
  12. 12.
    Mostowy S., Cossart P. 2011. Autophagy and the cytoskeleton: New links revealed by intracellular pathogens. Autophagy. 7, 780–782.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Peterson E.A., Petty E.M. 2010. Conquering the complex world of human septins: implications for health and disease. Clin. Genet. 77, 511–524.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Hall P.A., Russell S.E. 2004. The pathobiology of the septin gene family. J. Pathol. 204, 489–505.PubMedGoogle Scholar
  15. 15.
    Nishihama R., Onishi M., Pringle J.R. 2011. New insights into the phylogenetic distribution and evolutionary origins of the septins. Biol. Chem. 392, 681–687.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Kinoshita M. 2003. Assembly of mammalian septins. J. Biochem. 4, 491–496.Google Scholar
  17. 17.
    Casamayor A., Snyder M. 2003. Molecular dissection of a yeast septin: Distinct domains are required for septin interaction, localization, and function. Mol. Cell. Biol. 23, 2762–2777.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhang J., Kong C., Xie H., et al. 1999. Phosphatidylinositol polyphosphate binding to the mammalian septin H5 is modulated by GTP. Curr. Biol. 9, 1458–1467.PubMedGoogle Scholar
  19. 19.
    Versele M., Thorner J. 2005. Some assembly required: Yeast septins provide the instruction manual. Trends Cell Biol. 15, 414–424.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Sirajuddin M., Farkasovsky M., Hauer F., et al. 2007. Structural insight into filament formation by mammalian septins. Nature. 449, 311–315.PubMedGoogle Scholar
  21. 21.
    John C.M., Hite R.K., Weirich C.S., et al. 2007. The Caenorhabditis elegans septin complex is nonpolar. EMBO J. 26, 3296–3307.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Field C.M., Al-Awar O., Rosenblatt J., et al. 1996. A purified Drosophila septin complex forms filaments and exhibits GTPase activity. J. Cell Biol. 133, 605–616.PubMedGoogle Scholar
  23. 23.
    Bertin A., McMurray M.A., Grob P., et al. 2008. Saccharomyces cerevisiae septins: Supramolecular organization of heterooligomers and the mechanism of filament assembly. Proc. Natl. Acad. Sci. U. S. A. 105, 8274–8279.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Sandrock K., Bartsch I., Bläser S., et al. 2011. Characterization of human septin interactions. Biol. Chem. 392, 751–761.PubMedGoogle Scholar
  25. 25.
    Sellin M.E., Sandblad L., Stenmark S., et al. 2011. Deciphering the rules governing assembly order of mammalian septin complexes. Mol. Biol. Cell. 22, 3152–3164PubMedPubMedCentralGoogle Scholar
  26. 26.
    Sellin M.E., Stenmark S., Gullberg M. 2012. Mammalian SEPT9 isoforms direct microtubule-dependent arrangements of septin core heteromers. Mol. Biol. Cell. 23, 4242–4255.PubMedPubMedCentralGoogle Scholar
  27. 27.
    McMurray M.A., Bertin A., Garcia G., et al. 2011. Septin filament formation is essential in budding yeast. Dev. Cell. 20, 540–549.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Kim M.S., Froese C.D., Estey M.P., et al. 2011. SEPT9 occupies the terminal positions in septin octamers and mediates polymerization-dependent functions in abscission. J. Cell. Biol. 195, 815–826.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Nagata K., Asano T., Nozawa Y., et al. 2004. Biochemical and cell biological analyses of a mammalian septin complex, Sept7/9b/11. J. Biol. Chem. 279, 55895–55904.PubMedGoogle Scholar
  30. 30.
    Kinoshita M., Field C.M., Coughlin M.L., et al. 2002. Self-and actin-templated assembly of mammalian septins. Dev. Cell. 3, 791–802.PubMedGoogle Scholar
  31. 31.
    Fujishima K., Kiyonari H., Kurisu J., et al. 2007. Targeted disruption of Sept3, a heteromeric assembly partner of Sept5 and Sept7 in axons, has no effect on developing CNS neurons. J. Neurochem. 102, 77–92.PubMedGoogle Scholar
  32. 32.
    Hsu S.C., Hazuka C.D., Roth R., et al. 1998. Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron. 20, 1111–1122.PubMedGoogle Scholar
  33. 33.
    Bläser S., Jersch K., Hainmann I., et al. 2002. Human septin-septin interaction: CDCrel-1 partners with KIAA0202. FEBS Lett. 519, 169–172.PubMedGoogle Scholar
  34. 34.
    Martínez C., Sanjuan M.A., Dent J.A., et al. 2004. Human septin-septin interactions as a prerequisite for targeting septin complexes in the cytosol. Biochem. J. 382, 783–791.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Shinoda T., Ito H., Sudo K., et al. 2010. Septin 14 is involved in cortical neuronal migration via interaction with Septin 4. Mol. Biol. Cell. 21, 1324–1334.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Beites C.L., Xie H., Bowser R., et al. 1999. The septin CDCrel-1 binds syntaxin and inhibits exocytosis. Nat. Neurosci. 2, 434–439.PubMedGoogle Scholar
  37. 37.
    Mizutani Y., Ito H., Iwamoto I., et al. (2013. Possible role of a septin, SEPT1, in spreading in squamous cell carcinoma DJM-1 cells. Biol. Chem. 394, 281–290.PubMedGoogle Scholar
  38. 38.
    Macedo J.N.A., Valadares N.F., Marques I.A., et al. 2013. The structure and properties of septin 3: A possible missing link in septin filament formation. Biochem. J. 450, 95–105.PubMedGoogle Scholar
  39. 39.
    Zent E., Vetter I., Wittinghofer A. 2011. Structural and biochemical properties of Sept7, a unique septin required for filament formation. Biol. Chem. 392, 791–797.PubMedGoogle Scholar
  40. 40.
    Almeida Marques I. de, Valadares N.F., Garcia W., et al. 2012. Septin C-terminal domain interactions: Implications for filament stability and assembly. Cell Biochem. Biophys. 62, 317–328.PubMedGoogle Scholar
  41. 41.
    Hu H., Yu W., Li S., et al. (2006. Crystallization and preliminary crystallographic studies of human septin 1 with site-directed mutations. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 62, 128–132.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Garcia W., Araújo A.P.U. de, Lara F., et al. 2007. An intermediate structure in the thermal unfolding of the GTPase domain of human septin 4 (SEPT4/Bradeion-beta. forms amyloid-like filaments in vitro. Biochemistry. 46, 11101–11109.PubMedGoogle Scholar
  43. 43.
    Kinoshita M., Kumar S., Mizoguchi A., et al. (1997. Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures. Genes Dev. 11, 1535–1547.PubMedGoogle Scholar
  44. 44.
    Mendoza M., Hyman A.A., Glotzer M. 2002. GTP binding induces filament assembly of a recombinant septin. Curr. Biol. 12, 1858—1863.PubMedGoogle Scholar
  45. 45.
    Weirich C.S., Erzberger J.P., Barral Y. 2008. The septin family of GTPases: Architecture and dynamics. Nat. Rev. Mol. Cell Biol. 9, 478–489.PubMedGoogle Scholar
  46. 46.
    Sirajuddin M., Farkasovsky M., Zent E., et al. (2009. GTP-induced conformational changes in septins and implications for function. Proc. Natl. Acad. Sci. U. S. A. 106, 16592–16597.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Kudryashov D.S., Reisler E. 2013. ATP and ADP actin states. Biopolymers. 99, 245–256.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Bowne-Anderson H., Zanic M., Kauer M., et al. 2013. Microtubule dynamic instability: A new model with coupled GTP hydrolysis and multistep catastrophe. Bioessays. 35, 452–461.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Zent E., Wittinghofer A. 2014. Human septin isoforms and the GDP-GTP cycle. Biol. Chem. 395, 169–180.PubMedGoogle Scholar
  50. 50.
    Hagiwara A., Tanaka Y., Hikawa R., et al. 2011. Submembranous septins as relatively stable components of actin-based membrane skeleton. Cytoskeleton. 68, 512–525.PubMedGoogle Scholar
  51. 51.
    Hu Q., Nelson W.J., Spiliotis E.T. 2008. Forchlorfenuron alters mammalian septin assembly, organization, and dynamics. J. Biol. Chem. 283, 29563–29571.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Hernández-Rodríguez Y., Momany M. 2012. Posttranslational modifications and assembly of septin heteropolymers and higher-order structures. Curr. Opin. Microbiol. 15, 660–668.PubMedGoogle Scholar
  53. 53.
    Dobbelaere J., Barral Y. 2004. Spatial coordination of cytokinetic events by compartmentalization of the cell cortex. Science. 5682, 393–396.Google Scholar
  54. 54.
    Garcia G., Bertin A., Li Z., et al. 2011. Subunitdependent modulation of septin assembly: Budding yeast septin Shs1 promotes ring and gauze formation. J. Cell Biol. 195, 993–1004.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Sinha I., Wang Y.M., Philp R., et al. 2007. Cyclindependent kinases control septin phosphorylation in Candida albicans hyphal development. Dev. Cell. 3, 421–432.Google Scholar
  56. 56.
    Meseroll R.A., Occhipinti P., Gladfelter A.S. 2013. Septin phosphorylation and coiled-coil domains function in cell and septin ring morphology in the filamentous fungus Ashbya gossypii. Eukaryot. Cell. 2, 182–193.Google Scholar
  57. 57.
    Zhang Y., Gao J., Chung K.K., et al. 2000. Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicleassociated protein, CDCrel-1. Proc. Natl. Acad. Sci. U. S. A. 97, 13354–13359.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Muñoz-Soriano V., Nieto-Arellano R., Paricio N. 2012. Septin 4, the drosophila ortholog of human CDCrel-1, accumulates in parkin mutant brains and is functionally related to the Nedd4 E3 ubiquitin ligase. J. Mol. Neurosci. 48, 136–143.PubMedGoogle Scholar
  59. 59.
    Kitada T., Asakawa S., Hattori N., et al. 1998. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 392, 605–608.PubMedGoogle Scholar
  60. 60.
    Dong Z., Ferger B., Paterna J.C., et al. 2003. Dopamine-dependent neurodegeneration in rats induced by viral vector-mediated overexpression of the parkin target protein, CDCrel-1. Proc. Natl. Acad. Sci. U. S. A. 21, 12438–12443.Google Scholar
  61. 61.
    Son J.H., Kawamata H., Yoo M.S., et al. 2005. Neurotoxicity and behavioral deficits associated with Septin5 accumulation in dopaminergic neurons. J. Neurochem. 94, 1040–1053.PubMedGoogle Scholar
  62. 62.
    Ageta-Ishihara N., Yamakado H., Morita T., et al. 2013. Chronic overload of SEPT4, a parkin substrate that aggregates in Parkinson’s disease, causes behavioral alterations but not neurodegeneration in mice. Mol. Brain. 6,35.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Joberty G., Perlungher R.R., Sheffield P.J., et al. 2001. Borg proteins control septin organization and are negatively regulated by Cdc42. Nat. Cell Biol. 3, 861–866.PubMedGoogle Scholar
  64. 64.
    Sadian Y., Gatsogiannis C., Patasi C., et al. 2013. The role of Cdc42 and Gic1 in the regulation of septin filament formation and dissociation. Elife. 2, e01085.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Dekker C., Stirling P.C., McCormack E.A., et al. 2008. The interaction network of the chaperonin CCT. EMBO J. 27, 1827–1839.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Huijbregts R.P.H., Svitin A., Stinnett M.W., et al. 2009. Drosophila Orc6 facilitates GTPase activity and filament formation of the septin complex. Mol. Biol. Cell. 20, 270–281.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Akhmetova K., Balasov M., Huijbregts R.P.H., et al. 2015. Functional insight into the role of Orc6 in septin complex filament formation in Drosophila. Mol. Biol. Cell. 26, 15–28.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Gladfelter A.S., Pringle J.R., Lew D.J. 2001. The septin cortex at the yeast mother-bud neck. Curr. Opin. Microbiol. 4, 681–689.PubMedGoogle Scholar
  69. 69.
    Douglas L.M., Alvarez F.J., McCreary C., et al. 2005. Septin function in yeast model systems and pathogenic fungi. Eukaryot. Cell. 4, 1503–1512.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Joo E., Tsang C.W., Trimble W.S. 2005. Septins: Traffic control at the cytokinesis intersection. Traffic. 6, 626–634.PubMedGoogle Scholar
  71. 71.
    Kinoshita M., Noda M. 2001. Roles of septins in the mammalian cytokinesis machinery. Cell Struct. Funct. 26. 667–670.PubMedGoogle Scholar
  72. 72.
    Estey M., Di Ciano-Oliveira C., Froese C.D., et al. 2010. Distinct roles of septins in cytokinesis: SEPT9 mediates midbody abscission. J. Cell. Biol. 191, 741–749.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Tooley A.J., Gilden J., Jacobelli J., et al. 2009. Amoeboid T lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility. Nat. Cell Biol. 11, 17–26.PubMedGoogle Scholar
  74. 74.
    Menon M.B., Sawada A., Chaturvedi A., et al. 2014. Genetic deletion of SEPT7 reveals a cell type-specific role of septins in microtubule destabilization for the completion of cytokinesis. PLoS Genet. 10, e1004558.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Menon M.B., Gaestel M. 2015. Sep(t)arate or not: How some cells take septin-independent routes through cytokinesis. J. Cell Sci. 128, 1877–1886.PubMedGoogle Scholar
  76. 76.
    Spiliotis E.T., Gladfelter A.S. 2012. Spatial guidance of cell asymmetry: septin GTPases show the way. Traffic. 13, 195–203.PubMedGoogle Scholar
  77. 77.
    Lindsey R., Cowden S., Hernandez-Rodriguez Y., et al. 2010. Septins AspA and AspC are important for normal development and limit the emergence of new growth foci in the multicellular fungus Aspergillus nidulans. Eukaryot Cell. 9, 155–163.PubMedGoogle Scholar
  78. 78.
    Kinoshita N., Kimura K., Matsumoto N., et al. 2004. Mammalian septin Sept2 modulates the activity of GLAST, a glutamate transporter in astrocytes. Genes Cell. 1, 1–14.Google Scholar
  79. 79.
    Dolat L., Hu Q., Spiliotis E.T. 2014. Septin functions in organ system physiology and pathology. Biol. Chem. 395, 123–141.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Kremer B.E., Adang L.A., Macara I.G. 2007. Septins regulate actin organization and cell-cycle arrest through nuclear accumulation of NCK mediated by SOCS7. Cell. 130, 837–850.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Kim S.K., Shindo A., Park T.J., et al. 2010. Planar cell polarity acts through septins to control collective cell movement and ciliogenesis. Science. 329, 1337–1340.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Gilden J.K., Peck S., Chen Y.C., et al. 2012. The septin cytoskeleton facilitates membrane retraction during motility and blebbing. J. Cell. Biol. 196, 103–114.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Mostowy S., Janel S., Forestier C., et al. 2011. A role for septins in the interaction between the Listeria monocytogenes invasion protein InlB and the Met receptor. Biophys. J. 100, 1949–1959.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Dolat L., Hunyara J.L., Bowen J.R., et al. 2014. Septins promote stress fiber-mediated maturation of focal adhesions and renal epithelial motility. J. Cell. Biol. 207, 225–235.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Finger F.P., Kopish K.R., White J.G. 2003. A role for septins in cellular and axonal migration in C. elegans. Dev. Biol. 261, 220–234.PubMedGoogle Scholar
  86. 86.
    Beites C.L., Campbell K.A., Trimble W.S. 2005. The septin Sept5/CDCrel-1 competes with alpha-SNAP for binding to the SNARE complex. Biochem. J. 385, 347–353.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Amin N.D., Zheng Y.L., Kesavapany S., et al. 2008. Cyclin-dependent kinase 5 phosphorylation of human septin SEPT5 (hCDCrel-1) modulates exocytosis. J. Neurosci. 14, 3631–3643.Google Scholar
  88. 88.
    Ito H., Atsuzawa K., Morishita R., et al. 2009. Sept8 controls the binding of vesicle-associated membrane protein 2 to synaptophysin. J. Neurochem. 108, 867–880.PubMedGoogle Scholar
  89. 89.
    Dent J., Kato K., Peng X.R., et al. 2002. A prototypic platelet septin and its participation in secretion. Proc. Natl. Acad. Sci. U. S. A. 99, 3064–3069.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Tokhtaeva E., Capri J., Marcus E.A., et al. 2015. Septin dynamics are essential for exocytosis. J. Biol. Chem. 290, 5280–5297.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Ono R., Ihara M., Nakajima H., et al. 2005. Disruption of Sept6, a fusion partner gene of MLL, does not affect ontogeny, leukemogenesis induced by MLL-SEPT6, or phenotype induced by the loss of Sept4. Mol. Cell. Biol. 24, 10965–10978.Google Scholar
  92. 92.
    Tsang C.W., Fedchyshyn M., Harrison J., et al. 2008. Superfluous role of mammalian septins 3 and 5 in neuronal development and synaptic transmission. Mol. Cell. Biol. 23, 7012–7029.Google Scholar
  93. 93.
    Takizawa P.A., DeRisi J.L., Wilhelm J.E., et al. 2000. Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science. 290, 341–344.PubMedGoogle Scholar
  94. 94.
    Kissel H., Georgescu M.M., Larisch S., et al. 2005. The Sept4 septin locus is required for sperm terminal differentiation in mice. Dev. Cell. 8, 353–364.PubMedGoogle Scholar
  95. 95.
    Lhuillier P., Rode B., Escalier D., et al. 2009. Absence of annulus in human asthenozoospermia: Case report. Hum. Reprod. 24, 1296–1303.PubMedGoogle Scholar
  96. 96.
    Kwitny S., Klaus A.V., Hunnicutt G.R. 2010. The annulus of the mouse sperm tail is required to establish a membrane diffusion barrier that is engaged during the late steps of spermiogenesis. Biol. Reprod. 82, 669–678.PubMedGoogle Scholar
  97. 97.
    Berbari N.F., O’Connor A.K., Haycraft C.J., et al. 2009. The primary cilium as a complex signaling center. Curr. Biol. 19, R526–R535.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Hu Q., Nelson W.J. 2011. The ciliary diffusion barrier: The gatekeeper for the primary cilium compartment. Cytoskeleton (Hoboken). 68, 313–324.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Ghossoub R., Hu Q., Failler M., et al. 2013. Septins 2, 7 and 9 and MAP4 colocalize along the axoneme in the primary cilium and control ciliary length. J. Cell. Sci. 126, 2583–2594.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Hu Q., Milenkovic L., Jin H., et al. 2010. A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science. 329, 436–439.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Dash S.N., Lehtonen E., Wasik A.A., et al. 2014. Sept7b is essential for pronephric function and development of left-right asymmetry in zebrafish embryogenesis. J. Cell. Sci. 127, 1476–1486.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Higuchi-Sanabria R., Pernice W.M., Vevea J.D., et al. 2014. Role of asymmetric cell division in lifespan control in Saccharomyces cerevisiae. FEMS Yeast Res. 14, 1133–1146.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Chao J.T., Wong A.K., Tavassoli S., et al. 2014. Polarization of the endoplasmic reticulum by ER-septin tethering. Cell. 158, 620–632.PubMedGoogle Scholar
  104. 104.
    Spiliotis E.T., Hunt S.J., Hu Q., et al. 2008. Epithelial polarity requires septin coupling of vesicle transport to polyglutamylated microtubules. J. Cell. Biol. 180, 295–303.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Cho S.-J., Lee H., Dutta S., et al. 2011. Septin 6 regulates the cytoarchitecture of neurons through localization at dendritic branch points and bases of protrusions. Mol. Cells. 32, 89–98.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Li X., Serwanski D.R., Miralles C.P., et al. 2009. Septin 11 is present in GABAergic synapses and plays a functional role in the cytoarchitecture of neurons and GABAergic synaptic connectivity. J. Biol. Chem. 284, 17253–17265.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Tada T., Simonetta A., Batterton M., et al. 2007. Role of septin cytoskeleton in spine morphogenesis and dendrite development in neurons. Curr. Biol. 17, 1752–1758.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Xie Y., Vessey J.P., Konecna A., et al. 2007. The GTPbinding protein septin 7 is critical for dendrite branching and dendritic-spine morphology. Curr. Biol. 17, 1746–1751.PubMedGoogle Scholar
  109. 109.
    Ewers H., Tada T., Petersen J.D., et al. 2014. A septindependent diffusion barrier at dendritic spine necks. PLoS One. 9, 1–19.Google Scholar
  110. 110.
    Ashby M.C., Maier S.R., Nishimune A., et al. 2006. Lateral diffusion drives constitutive exchange of AMPA receptors at dendritic spines and is regulated by spine morphology. J. Neurosci. 26, 7046–7055.PubMedGoogle Scholar
  111. 111.
    Ryu J., Liu L., Wong T.P., et al. 2006. A critical role for myosin IIb in dendritic spine morphology and synaptic function. Neuron. 49, 175–182.PubMedGoogle Scholar
  112. 112.
    Joo E., Surka M.C., Trimble W.S. 2007. Mammalian SEPT2 is required for scaffolding nonmuscle myosin II and its kinases. Dev. Cell. 13, 677–690.PubMedGoogle Scholar
  113. 113.
    Dent E.W., Merriam E.B., Hu X. 2011. The dynamic cytoskeleton: backbone of dendritic spine plasticity. Curr. Opin. Neurobiol. 21, 175–181.PubMedGoogle Scholar
  114. 114.
    Calvo F., Ranftl R., Hooper S., et al. 2015. Cdc42EP3/BORG2 and septin network enables mechano-transduction and the emergence of cancerassociated fibroblasts. Cell. Rep. 13, 2699–2714.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Field C.M., Coughlin M., Doberstein S., et al. 2005. Characterization of anillin mutants reveals essential roles in septin localization and plasma membrane integrity. Development. 132, 2849–2860.PubMedGoogle Scholar
  116. 116.
    Oegema K., Savoian M.S., Mitchison T.J., et al. 2000. Functional analysis of a human homologue of the Drosophila actin binding protein anillin suggests a role in cytokinesis. J. Cell Biol. 150, 539–552.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Mavrakis M., Azou-Gros Y., Tsai F.C., et al. 2014. Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles. Nat. Cell Biol. 16, 322–334.PubMedGoogle Scholar
  118. 118.
    Smith C., Dolat L., Angelis D., et al. 2015. Septin 9 exhibits polymorphic binding to F-actin and inhibits myosin and cofilin activity. J. Mol. Biol. 427, 3273–3284.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Schmidt K., Nichols B.J. 2004. Functional interdependence between septin and actin cytoskeleton. BMC Cell Biol. 5,43.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Kusch J., Meyer A., Snyder M.P., et al. 2002. Microtubule capture by the cleavage apparatus is required for proper spindle positioning in yeast. Genes Dev. 16, 1627–1639.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Pablo-Hernando M.E., Arnaiz-Pita Y., Tachikawa H., et al. 2008. Septins localize to microtubules during nutritional limitation in Saccharomyces cerevisiae. BMC Cell Biol. 9,55.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Spiliotis E.T. 2010. Regulation of microtubule organization and functions by septin GTPases. Cytoskeleton. 67, 339–345.PubMedGoogle Scholar
  123. 123.
    Kremer B.E., Haystead T., Macara I.G. 2005. Mammalian septins regulate microtubule stability through interaction with the microtubule-binding protein MAP4. Mol. Biol. Cell. 16, 4648–4659.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Bai X., Bowen J.R., Knox T.K., et al. 2013. Novel septin 9 repeat motifs altered in neuralgic amyotrophy bind and bundle microtubules. J. Cell Biol. 203, 895–905.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Hu J., Bai X., Bowen J.R., et al. 2012. Septin-driven coordination of actin and microtubule remodeling regulates the collateral branching of axons. Curr. Biol. 22, 1109–1115.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Cau J., Hall A. 2005. Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways. J. Cell Sci. 118, 2579–2587.PubMedGoogle Scholar
  127. 127.
    Gomes E.R., Jani S., Gundersen G.G. 2005. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell. 121, 451–463.PubMedGoogle Scholar
  128. 128.
    Larisch S. 2004. The ARTS connection: Role of ARTS in apoptosis and cancer. Cell Cycle. 3, 1021–1023.PubMedGoogle Scholar
  129. 129.
    Gottfried Y., Rotem A., Lotan R., et al. 2004. The mitochondrial ARTS protein promotes apoptosis through targeting XIAP. EMBO J. 23, 1627–1635.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Edison N., Reingewertz T.H., Gottfried Y., et al. 2012. Peptides mimicking the unique ARTS-XIAP binding site promote apoptotic cell death in cultured cancer cells. Clin. Cancer Res. 18, 2569–2578.PubMedGoogle Scholar
  131. 131.
    Takahashi S., Inatome R., Yamamura H., et al. 2003. Isolation and expression of a novel mitochondrial septin that interacts with CRMP/CRAM in the developing neurones. Genes Cells. 8, 81–93.PubMedGoogle Scholar
  132. 132.
    Diesenberg K., Beerbaum M., Fink U., et al. 2015. SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR. J. Cell Sci. 128, 397–407.PubMedGoogle Scholar
  133. 133.
    Marcus E.A., Tokhtaeva E., Turdikulova S., et al. 2016. Septin oligomerization regulates persistent expression of ErbB2/HER2 in gastric cancer cells. Biochem. J. 473, 1703–1718.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Sirianni A., Krokowski S., Lobato-Márquez D., et al. 2016. Mitochondria mediate septin cage assembly to promote autophagy of Shigella. EMBO Rep. 17, 1029–1043.PubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • K. A. Akhmetova
    • 1
    • 2
    • 3
  • I. N. Chesnokov
    • 2
  • S. A. Fedorova
    • 1
    • 3
  1. 1.Institute of Cytology and GeneticsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.University of Alabama at BirminghamBirminghamUSA
  3. 3.Novosibirsk National Research State UniversityNovosibirskRussia

Personalised recommendations