Molecular Biology

, Volume 51, Issue 4, pp 639–646 | Cite as

Synthesis of circular DNA templates with T4 RNA ligase for rolling circle amplification

  • A. R. Sakhabutdinova
  • M. A. Maksimova
  • R. R. Garafutdinov
Structural and Functional Analysis of Biopolymers and Their Complexes


Currently, isothermal methods of nucleic acid amplification have been well established; in particular, rolling circle amplification is of great interest. In this approach, circular ssDNA molecules have been used as a target that can be obtained by the intramolecular template-dependent ligation of an oligonucleotide C-probe. Here, a new method of synthesizing small circular DNA molecules via the cyclization of ssDNA based on T4 RNA ligase has been proposed. Circular ssDNA is further used as the template for the rolling circle amplification. The maximum yield of the cyclization products was observed in the presence of 5−10% polyethylene glycol 4000, and the optimum DNA length for the cyclization constituted 50 nucleotides. This highly sensitive method was shown to detect less than 102 circular DNA molecules. The method reliability was proved based on artificially destroyed dsDNA, which suggests its implementation for analyzing any significantly fragmented dsDNA.


rolling circle amplification ramification circular DNA T4 RNA ligase intramolecular template-independent ligation 



polymerase chain reaction


rolling circle amplification


nucleic acid


polyethylene glycol


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chang C.C., Chen C.C., Wei S.C., Lu H.H., Liang Y.H., Lin C.W. 2011. Diagnostic devices for isothermal nucleic acid amplification. Bioanalysis. 3, 227–239.CrossRefGoogle Scholar
  2. 2.
    Kim J., Easley C.J. 2011. Isothermal DNA amplifcation in bioanalysis: Strategies and applications. Bioanalysis. 3, 227–239.CrossRefPubMedGoogle Scholar
  3. 3.
    Gill P., Ghaemi A. 2008. Nucleic acid isothermal amplification technologies: A review. Nucleos. Nucleot. Nucl. Acids. 2, 224–243.CrossRefGoogle Scholar
  4. 4.
    Lizardi P.M., Huang X., Zhu Z., Bray-Ward P., Thomas D.C., Ward D.C. 1998. Mutation detection and single-molecule counting using isothermal rollingcircle amplification. Nat. Genet. 19, 225–232.CrossRefPubMedGoogle Scholar
  5. 5.
    Ali M.M., Li F., Zhang Zh., Zhang K., Kang D.K., Ankrum J.A., Le X.C., Zhao W. 2014. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine. Chem. Soc. Rev. 43, 3324–3341.CrossRefPubMedGoogle Scholar
  6. 6.
    Hutchison C.A., Smith H.O., Pfannkoch C., Venter J.C. 2005. Cell-free cloning using phi29 DNA polymerase. Proc. Natl. Acad. Sci. U. S. A. 102, 17332–17336.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Polidoros A.N., Pasentsis K., Tsaftaris A.S. 2006. Rolling circle amplification-RACE: A method for simultaneous isolation of 5' and 3' cDNA ends from amplified cDNA templates. BioTechniques. 41, 35–36.CrossRefPubMedGoogle Scholar
  8. 8.
    Kaocharoen S., Wang W., Tsui K., Trilles L., Kong F., Meyer W. 2008. Hyperbranched rolling circle amplification as a rapid and sensitive method for species identification within the Cryptococcus species complex. Electrophoresis. 29, 3183–3191.PubMedGoogle Scholar
  9. 9.
    Zhang D.Y., Brandwein M., Hsuih T.C., Li H. 1998. Amplification of target-specific, ligation-dependent circular probe. Gene. 211, 277–285.CrossRefPubMedGoogle Scholar
  10. 10.
    Murakami T., Sumaoka J., Komiyama M. 2008. Sensitive isothermal detection of nucleic-acid sequence by primer generation-rolling circle amplification. Nucleic Acids Res. 37, e19.CrossRefGoogle Scholar
  11. 11.
    Kobori T., Takahashi H. 2013. Expanding possibilities of rolling circle amplification as a biosensing platform. Anal. Sci. 30, 59–64.CrossRefGoogle Scholar
  12. 12.
    Lee S.Y., Kim K.R., Bang D., Bae S.W., Kim H.J., Ahn D.R. 2016. Biophysical and chemical handles to control the size of DNA nanoparticles produced by rolling circle amplification. Biomater. Sci. 4 (9), 1314–1317. doi 10.1039/C6BM00296JCrossRefPubMedGoogle Scholar
  13. 13.
    Guo L., Hao L., Zhao Q. 2016. An aptamer assay using rolling circle amplification coupled with thrombin catalysis for protein detection. Anal. Bioanal. Chem. 408, 4715–4722.CrossRefPubMedGoogle Scholar
  14. 14.
    Uhlenbeck O.C., Gimport R.I. 1982. The Enzymes (T4 RNA Ligase). New York: Academic Press.Google Scholar
  15. 15.
    Kumar P., Johnston B.H., Kazakov S.A. 2011. miR-ID: A novel, circularization-based platform for detection of microRNAs. RNA. 17, 365–380.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mathew C.G. 1985. The isolation of high molecular weight eucariotic DNA. Methods Mol. Biol. 2, 31–34.PubMedGoogle Scholar
  17. 17.
    Maniatis T, Fritsch E.F., Sambrook J. 1982. Molecular Clonong: A Laboratory Manual. Cold Spring Harbor, NY: Cold Sring Harbor Lab. Press.Google Scholar
  18. 18.
    Silber R., Malathi V.G., Hurwitz J. 1972. Purification and properties of bacteriophage T4-induced RNA ligase. Proc. Natl. Acad. Sci. U. S. A. 69, 3009–3013.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Snopek T.J., Sugino A., Agarwal K.L., Cozzarelli N.R. 1976. Catalysis of DNA joining by bacteriophage T4 RNA ligase. Biochem. Biophys. Res. Commun. 68, 417–424.CrossRefPubMedGoogle Scholar
  20. 20.
    Sugino A., Snoper T.J., Cozzarelli N.R. 1977. Bacteriophage T4 RNA ligase. Reaction intermediates and interaction of substrates. J. Biol. Chem. 252, 1732–1738.PubMedGoogle Scholar
  21. 21.
    Kaufmann G., Klein T., Littauer U.Z. 1974. T4 RNA ligase: Substrate chain length requirements. FEBS Lett. 46, 271–275.CrossRefPubMedGoogle Scholar
  22. 22.
    Tan E., Erwin B., Dames S., Ferguson T., Buechel M., Irvine B., Voelkerding K., Niemz A. 2008. Specific versus nonspecific isothermal DNA amplification through thermophilic polymerase and nicking enzyme activities. Biochemistry. 47, 9987–9999.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zyrina N.V., Antipova V.N., Zheleznaya L.A. 2014. Ab initio synthesis by DNA polymerases. FEMS Microbiol. Lett. 351, 1–6.CrossRefGoogle Scholar
  24. 24.
    Zyrina N.V., Zheleznaya L.A., Dvoretsky E.V., Vasiliev V.D., Chernov A., Matvienko N.I. 2007. N.BspD6I DNA nickase strongly stimulates templateindependent synthesis of non-palindromic repetitive DNA by Bst DNA polymerase. Biol. Chem. 388, 367–372.CrossRefPubMedGoogle Scholar
  25. 25.
    Antipova V.N., Zheleznaya L.A., Zyrina N.V. 2014. Ab initio DNA synthesis by Bst polymerase in the presence of nicking endonucleases Nt.AlwI, Nb.BbvCI, and Nb.BsmI. FEMS Microbiol. Lett. 357, 144–150.PubMedGoogle Scholar
  26. 26.
    Tessier D.C., Brousseau R., Vernet T. 1986. Ligation of single-stranded oligodeoxyribonucleotides by T4 RNA ligase. Anal. Biochem. 158, 171–178.CrossRefPubMedGoogle Scholar
  27. 27.
    Harrison B., Zimmerman S.B. 1984. Polymer-stimulated ligation: Enhanced ligation of oligo- and polynucleotides by T4 RNA ligase in polymer solutions. Nucleic Acids Res. 12, 8235–8251.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • A. R. Sakhabutdinova
    • 1
  • M. A. Maksimova
    • 1
  • R. R. Garafutdinov
    • 1
  1. 1.Institute of Biochemistry and Genetics, Ufa Science CentreRussian Academy of SciencesUfaRussia

Personalised recommendations