Advertisement

Molecular Biology

, Volume 51, Issue 3, pp 352–367 | Cite as

Regulation of heat shock gene expression in response to stress

  • D. G. GarbuzEmail author
Reviews

Abstract

Heat shock (HS) genes, or stress genes, code for a number of proteins that collectively form the most ancient and universal stress defense system. The system determines the cell capability of adaptation to various adverse factors and performs a variety of auxiliary functions in normal physiological conditions. Common stress factors, such as higher temperatures, hypoxia, heavy metals, and others, suppress transcription and translation for the majority of genes, while HS genes are upregulated. Transcription of HS genes is controlled by transcription factors of the HS factor (HSF) family. Certain HSFs are activated on exposure to higher temperatures or other adverse factors to ensure stress-induced HS gene expression, while other HSFs are specifically activated at particular developmental stages. The regulation of the main mammalian stress-inducible factor HSF1 and Drosophila melanogaster HSF includes many components, such as a variety of early warning signals indicative of abnormal cell activity (e.g., increases in intracellular ceramide, cytosolic calcium ions, or partly denatured proteins); protein kinases, which phosphorylate HSFs at various Ser residues; acetyltransferases; and regulatory proteins, such as SUMO and HSBP1. Transcription factors other than HSFs are also involved in activating HS gene transcription; the set includes D. melanogaster GAF, mammalian Sp1 and NF-Y, and other factors. Transcription of several stress genes coding for molecular chaperones of the glucose-regulated protein (GRP) family is predominantly regulated by another stress-detecting system, which is known as the unfolded protein response (UPR) system and is activated in response to massive protein misfolding in the endoplasmic reticulum and mitochondrial matrix. A translational fine tuning of HS protein expression occurs via changing the phosphorylation status of several proteins involved in translation initiation. In addition, specific signal sequences in the 5'-UTRs of some HS protein mRNAs ensure their preferential translation in stress.

Keywords

heat shock heat shock proteins transcription regulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lindquist S. 1986. The heat-shock response. Annu. Rev. Biochem. 55, 1151–1191.PubMedCrossRefGoogle Scholar
  2. 2.
    Easton D.P., Kaneko Y., Subjeck J.R. 2000. The Hsp110 and Grp1 70 stress proteins: Newly recognized relatives of the Hsp70s. Cell Stress Chaperones. 5, 276–290.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Kampinga H.H., Hageman J., Vos M.J., Kubota H., Tanguay R.M., Bruford E.A., Cheetham M.E., Chen B., Hightower L.E. 2009. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones. 14, 105–111.PubMedCrossRefGoogle Scholar
  4. 4.
    Pardue M.L., Scott M.P., Storti R.V., Lengyel J.A. 1980. The heat shock response: A model system for the study of gene regulation in Drosophila. Basic Life Sci. 16, 41–55.PubMedGoogle Scholar
  5. 5.
    Lakhotia S.C., Prasanth K.V. 2002. Tissue- and development- specific induction and turnover of hsp70 transcripts from loci 87A and 87C after heat shock and during recovery in Drosophila melanogaster. J. Exp. Biol. 205, 345–358.PubMedGoogle Scholar
  6. 6.
    Little E., Ramakrishnan M., Roy B., Gazit G., Lee A.S. 1994. The glucose-regulated proteins (GRP78 and GRP94): Functions, gene regulation, and applications. Crit. Rev. Eukaryot. Gene. Expr. 4, 1–18.PubMedCrossRefGoogle Scholar
  7. 7.
    Segal G., Ron E.Z. 1998. Regulation of heat-shock response in bacteria. Ann. N.Y.Acad. Sci. 851, 147–151.PubMedCrossRefGoogle Scholar
  8. 8.
    Morita M.T., Tanaka Y., Kodama T.S., Kyogoku Y., Yanagi H., Yura T. 1999. Translational induction of Heat Shock Transcription Factor σ-32: Evidence for a built-in RNA thermosensor. Genes Dev. 13, 655–665.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Ritossa F. 1962. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia. 18, 571–573.CrossRefGoogle Scholar
  10. 10.
    Ritossa F. 1963. New puffs induced by temperature shock, DNP and salicilate in salivary chromosomes of D.melanogaster. Drosophila Information Service. 37, 122–123.Google Scholar
  11. 11.
    Amin J., Ananthan J., Voellmy R. 1988. Key features of heat shock regulatory elements. Mol. Cell. Biol. 8, 3761–3769.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Hashikawa N., Mizukami Y., Imazu H., Sakurai H. 2006. Mutated yeast heat shock transcription factor activates transcription independently of hyperphosphorylation. J. Biol. Chem. 281, 3936–3942.PubMedCrossRefGoogle Scholar
  13. 13.
    Yamamoto A., Mizukami Y., Sakurai H. 2005. Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae. J. Biol. Chem. 280, 11911–11919.PubMedCrossRefGoogle Scholar
  14. 14.
    Amin J., Nestril R., Schiller P., Dreano M., Voellmy R. 1987. Organization of the Drosophila melanogaster hsp70 heat shock regulation unit. Mol. Cell. Biol. 7, 1055–1062.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Tian S., Haney R.A., Feder M.E. 2010. Phylogeny disambiguates the evolution of heat-shock cis-regulatory elements in Drosophila. PLoS ONE. 5, e10669PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Bienz M., Pelham H.R.B. 1986. Heat shock regulatory elements function as an inducible enhancer in the Xenopus hsp70 gene and when linked to a heterologous promoter. Cell. 45, 753–760.PubMedCrossRefGoogle Scholar
  17. 17.
    Berger E.M., Marino G., Torrey D. 1985. Expression of Drosophila hsp 70-CAT hybrid gene in Aedes cells induced by heat shock. Somat. Cell. Mol. Genet. 11, 371–377.PubMedCrossRefGoogle Scholar
  18. 18.
    McMahon A.P., Novak T.J., Britten R.J., Davidson E.H. 1984. Inducible expression of a cloned heat shock fusion gene in sea urchin embryos. Proc. Natl. Acad. Sci. U.S. A. 81, 7490–7494.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Uhlirova M., Asahina M., Riddiford L.M., Jindra M. 2002. Heat-inducible transgenic expression in the silkmoth Bombyx mori. Dev. Genes Evol. 212, 145–151.PubMedCrossRefGoogle Scholar
  20. 20.
    Bienz M., Pelham H.R.B. 1982. Expression of a Drosophila heat-shock protein in Xenopus oocytes: Conserved and divergent regulatory signals. EMBO J. 1, 1583–1588.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Voellmy R., Rungger D. 1982. Transcription of a Drosophila heat shock gene is heat-induced in Xenopus oocytes. Proc. Natl. Acad. Sci. U.S. A. 79, 1776–1780.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Burke J.E., Ish-Horowicz D. 1982. Expression of Drosophila heat-shock genes is regulated in Rat-1 cells. Nucleic Acids Res. 10, 3821–3830.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Mirault M.E., Southgate R., Delwart E. 1982. Regulation of heat shock genes: A DNA sequence up-stream of Drosphila hsp70 genes is essential for their induction in monkey cells. EMBO J. 1, 1279–1285.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Atkinson P.W., O’Brochta D.A. 1992. In vivo expression of two highly conserved Drosophila genes in Australian sheep blowfly, Lucilia cuprina. Insect Biochem. Mol. Biol. 22, 423–431.CrossRefGoogle Scholar
  25. 25.
    Kalosaka K., Chrysanthis G., Rojas-Gill A.P., Theodoraki M., Gourzi P., Kyriakopoulos A., Tatari M., Zacharopoulou A., Mintzas A.C. 2006. Evaluation of the activities of the medfly and Drosophila hsp70 promoters in vivo in germ-line transformed medflies. Insect Mol. Biol. 15, 373–382.PubMedCrossRefGoogle Scholar
  26. 26.
    Astakhova L.N., Zatsepina O.G., Funikov S.Yu., Zelentsova E.S., Schostak N.G., Orishchenko K.E., Evgen’ev M.B., Garbuz D.G. 2015. Activity of heat shock genes' promoters in thermally contrasting animal species. PLOS ONE. 10, e0115536PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Morgan W.D., Williams G.T., Morimoto R.I., Greene J., Kingston R.E., Tjian R. 1987. Two transcriptional activators, CCAAT-box-binding transcription factor and Heat Shock Factor, interact with a human HSP70 gene promoter. Mol. Cell. Biol. 7, 1129–1138.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Bevilacqua A., Fiorenza M.T., Mangia F. 1997. Developmental activation of an episomic HSP70 gene promoter in two-cells mouse embryos by transcription factor Sp1. Nucleic Acids Res. 25, 1333–1338.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Stephanou A., Isenberg D.A., Nakajima K., Latchman D.S. 1999. Signal transducer and activator of transcription- 1 and Heat Shock Factor-1 interact and activate the transcription of the HSP70 and HSP90β promoters. J. Biol. Chem. 274, 1723–1728.PubMedCrossRefGoogle Scholar
  30. 30.
    Petesch S.J., Lis J.T. 2008. Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci. Cell. 134, 74–84.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Guertin M.J., Petesch S.J., Zobeck K.L., Min I.M., Lis J.T. 2010. Drosophila heat shock system as a general model to investigate transcriptional regulation. Cold Spring Harbor Symp. Quant. Biol. 75, 1–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Petesch S.J., Lis J.T. 2012. Activator-induced spread of poly(ADP-ribose) polymerase promotes nucleosome loss at Hsp70. Mol. Cell. 45, 64–74.PubMedCrossRefGoogle Scholar
  33. 33.
    Petesch S.J., Lis J.T. 2012. Overcoming the nucleosome barrier during transcript elongation. Trends Genet. 28, 285–294.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Wu C. 1995. Heat shock transcription factors: Structure and regulation. Ann. Rev. Cell. Dev. Biol. 11, 441–469.CrossRefGoogle Scholar
  35. 35.
    Morimoto R.I. 1998. Regulation of the heat shock transcription response: Cross talk between a family of HSFs, molecular chaperones, and negative regulators. Genes Dev. 12, 3788–3796.PubMedCrossRefGoogle Scholar
  36. 36.
    Kinoshita K., Shinka T., Sato Y., Kurahashi H., Kowa H., Chen G., Umeno M., Toida K., Kiyokage E., Nakano T., Ito S., Nakahori Y. 2006. Expression analysis of a mouse orthologue of HSFY, a candidate for the azoospermic factor on the human Y chromosome. J. Med. Invest. 53, 117–122.PubMedCrossRefGoogle Scholar
  37. 37.
    Åkerfelt M., Morimoto R.I., Sistonen L. 2010. Heat shock factors: Integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell. Biol. 11, 545–555.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Loones M.T., Rallu M., Mezger V., Morange M. 1997. HSP gene expression and HSF2 in mouse development. Cell. Mol. Life Sci. 53, 179–190.PubMedCrossRefGoogle Scholar
  39. 39.
    Fujimoto M., Hayashida N., Katoh T., Oshima K., Shinkawa T., Prakasam R., Tan K., Inouye S., Takii R., Nakai A. 2010. A novel mouse HSF3 has the potential to activate nonclassical heat-shock genes during heat shock. Mol. Biol. Cell. 21, 106–116.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Shinka T., Sato Y., Chen G., Naroda T., Kinoshita K., Unemi Y., Tsuji K., Toida K., Iwamoto T., Nakahori Y. 2004. Molecular characterization of heat shock-like factor encoded on the human Y chromosome, and implications for male infertility. Biol. Reprod. 71, 297–306.PubMedCrossRefGoogle Scholar
  41. 41.
    Zimarino V., Tsai C., Wu C. 1990. Complex modes of heat shock factor activation. Mol. Cell. Biol. 10, 752–759.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Qu A.L., Ding Y.F., Jiang Q., Zhu C. 2013. Molecular mechanisms of the plant heat stress response. Biochem. Biophys. Res. Commun. 432, 203–207.PubMedCrossRefGoogle Scholar
  43. 43.
    Westwood J.T., Wu C. 1993. Activation of Drosophila heat shock factor: Conformational change associated with a monomer-to-trimer transition. Mol. Cell. Biol. 13, 3481–3486.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Rabindran S.K., Haroun R.I., Clos J., Wisniewski J., Wu C. 1993. Regulation of heat shock factor trimer formation: Role of a conserved leucine zipper. Science. 259, 230–234.PubMedCrossRefGoogle Scholar
  45. 45.
    Orosz A., Wisniewski J., Wu C. 1996. Regulation of Drosophila heat shock factor trimerisation: Global sequence requirements and independence of nuclear localization. Mol. Cell. Biol. 16, 7018–7030.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Zou J., Guo Y., Guettouche T., Smith D.F., Voellmy R. 1998. Repression of heat shock transcription factor HSF1 activation by HSP90 HSP90 complex. that forms a stresssensitive complex with HSF1. Cell. 94, 471–480.PubMedCrossRefGoogle Scholar
  47. 47.
    Clos J., Rabindran S., Wisniewski J., Wu C. 1993. Induction temperature of human heat shock factor is reprogrammed in a Drosophila cell environment. Nature. 364, 252–255.PubMedCrossRefGoogle Scholar
  48. 48.
    Abravaya K., Myers M.P., Murphy S.P., Morimoto R.I. 1992. The human heat shock protein HSP70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev. 6, 1153–1164.PubMedCrossRefGoogle Scholar
  49. 49.
    Xu Y., Lindquist S. 1993. Heat-shock protein HSP90 governs the activity of pp60v-src kinase. Proc. Natl. Acad. Sci. U.S. A. 90, 7074–7078.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Whitesell L., Sutphin P.D., Pulcini E.J., Martinez J.D., Cook P.H. 1998. The physical association of multiple molecular chaperone proteins with mutant p53 is altered by geldanamycin, an HSP90-binding agent. Mol. Cell. Biol. 18, 1517–1524.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Kosano H., Stensgard B., Charlesworth M.C., McMahon N., Toft D. 1998. The assembly of progesterone receptor-hsp90 complexes using purified proteins. J. Biol. Chem. 273, 32973–32979.PubMedCrossRefGoogle Scholar
  52. 52.
    Ostling P., Björk J.K., Roos-Mattjus P., Mezger V., Sistonen L. 2007. Heat shock factor 2 (HSF2) contributes to inducible expression of hsp genes through interplay with HSF1. J. Biol. Chem. 282, 7077–7086.PubMedCrossRefGoogle Scholar
  53. 53.
    Gallo G.J., Schuetz T.J., Kingston R.E. 1991. Regulation of heat shock factor in Schizosaccharomyces pombe more closely resembles regulation in mammals than in Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 281–288.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Ananthan J., Goldberg A.L., Voellmy R. 1986. Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science. 232, 522–524.PubMedCrossRefGoogle Scholar
  55. 55.
    Pirkkala L., Alastalo T.P., Zuo X., Benjamin I.J., Sistonen L. 2000. Disruption of heat shock factor 1 reveals an essential role in the ubiquitin proteolytic pathway. Mol. Cell. Biol. 20, 2670–2675.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Peng W., Zhang Y., Zheng M., Cheng H., Zhu W., Cao C.M., Xiao R.P. 2010. Cardioprotection by CaMKIIdeltaB is mediated by phosphorylation of heat shock factor 1 and subsequent expression of inducible heat shock protein 70. Circ. Res. 106, 102–110.PubMedCrossRefGoogle Scholar
  57. 57.
    Ding X.Z., Tsocos G.C., Kiang J.G. 1997. Heat Shock Factor-1 in Heat Shock Factor-1 gene-transfected human epidermoid A431 cells requires phosphorylation before inducing Heat Shock Protein-70 production. J. Clin. Invest. 99, 136–143.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Guettouche T., Boellmann F., Lane W.S., Voellmy R. 2005. Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem. 6, 4.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Jurivich D.A., Pachetti C., Qiu L., Welk J.F. 1995. Salicylate triggers heat shock factor differently than heat. J. Biol. Chem. 270, 24489–24495.PubMedCrossRefGoogle Scholar
  60. 60.
    Nikolova-Karakashian M.N., Rozenova K.A. 2010. Ceramide in stress response. Adv. Exp. Med. Biol. 688, 86–108.PubMedCrossRefGoogle Scholar
  61. 61.
    Wells G.B., Dickson R.C., Lester R.L. 1998. Heatinduced elevation of ceramide in Saccharomyces cerevisiae via de novo synthesis. J. Biol. Chem. 273, 7235–7243.PubMedCrossRefGoogle Scholar
  62. 62.
    Chu B., Soncin F., Price B.D., Stevenson M.A., Calderwood S.K. 1996. Sequential phosphorylation by mitogen-activated kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor- 1. J. Biol. Chem. 271, 30847–30857.PubMedCrossRefGoogle Scholar
  63. 63.
    Anckar J., Sistonen L. 2007. Heat Shock Factor 1 as a coordinator of stress and developmental pathways. Adv. Exp. Med. Biol. 594, 78–88.PubMedCrossRefGoogle Scholar
  64. 64.
    Wang X., Grammatikakis N., Siganou A., Stevenson M.A., Calderwood S.K. 2004. Interactions between extracellular signal-regulated protein kinase 1,14–3-3 epsilon, and heat shock factor 1 during stress. J. Biol. Chem. 279, 49460–49469.PubMedCrossRefGoogle Scholar
  65. 65.
    Simioni M.B., De Thonel A., Hammann A., Joly A.L., Fourmaux E., Bouchot A., Landry J., Piechaczyk M., Garrido C. 2009. Heat shock protein 27 is involved in SUMO-2/3 modification of heat shock factor 1 and thereby modulates the transcription factor activity. Oncogene. 28, 3332–3344.CrossRefGoogle Scholar
  66. 66.
    Cotto J.J., Morimoto R.I. 1999. Stress-induced activation of the heat-shock response: Cell and molecular biology of heat-shock factors. Biochem. Soc. Symp. 64, 105–118.PubMedGoogle Scholar
  67. 67.
    Zhang M., Blake M.J., Gout P.W., Buckley D.J., Buckley A.R. 1999. Proteolysis of heat shock transcription factor is associated with apoptosis in rat Nb2 lymphoma cells. Cell Growth Differ. 10, 769–777.Google Scholar
  68. 68.
    Zhang M., Buckley D., Lavoi K.P., Buckley A.R., Blake M.J. 1998. Heat-induced proteolysis of HSF causes premature deactivation of heat shock response in Nb2 lymphoma cells. Cell Stress Chaperones. 3, 57–66.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Westerheide S.D., Anckar J., Stevens S.M., Lea Sistonen L., Morimoto R.I. 2009. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science. 323, 1063–1066.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Tanabe M., Sasai N., Nagata K., Liu X.D., Liu P.C., Thiele D.J., Nakai A. 1999. The mammalian HSF4 gene generates both an activator and a repressor of heat shock genes by alternative splicing. J. Biol. Chem. 274, 27845–27856.PubMedCrossRefGoogle Scholar
  71. 71.
    Shamovsky I., Ivannikov M., Kandel E.S., Gershon D., Nudler E. 2006. RNA-mediated response to heat shock in mammalian cells. Nature. 440, 556–560.PubMedCrossRefGoogle Scholar
  72. 72.
    Kim D.S., Lee Y., Hahn Y. 2010. Evidence for bacterial origin of heat shock RNA-1. RNA. 16, 274–279.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Choi D., Oh H.J., Goh C.J., Lee K., Hahn Y. 2015. Heat shock RNA 1, known as a eukaryotic temperature- sensing noncoding RNA, is of bacterial origin. J. Microbiol. Biotechnol. 25, 1234–1240.PubMedCrossRefGoogle Scholar
  74. 74.
    Belikov S.V., Karpov V.L. 1996. Mapping protein-DNA interaction with CIS-DDP: Chromatine structure of promoter region of D.melanogaster HSP70 gene. Biochem. Mol. Biol. Int. 38, 997–902.PubMedGoogle Scholar
  75. 75.
    Karpov V.L., Preobrazhenskaya O.V., Mirzabekov A.D. 1984. Chromatin structure of hsp70 genes, activated by heat shock: Selective removal of histones from the coding region and their absence from the 5' region. Cell. 36, 423–431.PubMedCrossRefGoogle Scholar
  76. 76.
    Tsukiyama T., Becker P.B., Wu C. 1994. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature. 367, 525–532.PubMedCrossRefGoogle Scholar
  77. 77.
    Shopland L.S., Hirayoshi K., Fernandes M., Lis J.T. 1995. HSF access to heat shock elements in vivo depends critically on promoter architecture defined by GAGA-factor, TFIID, and RNA-polymerase II binding sites. Genes Dev. 9, 2756–2769.PubMedCrossRefGoogle Scholar
  78. 78.
    Omelina E.S., Baricheva E.M., Oshchepkov D.Yu., Merkulova T.I. 2011. Analysis and recognition of the GAGA transcription factor binding sites in Drosophila genes. Comp. Biol. Chem. 35, 363–370.CrossRefGoogle Scholar
  79. 79.
    Wilkins R.C., Lis J.T. 1997. Dynamics of potentiation and activation: GAGA factor and its role in heat shock gene regulation. Nucleic Acids Res. 25, 3963–3968.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    O’Brien T., Wilkins R.C., Giardina C., Lis J.T. 1995. Distribution of GAGA protein on Drosophila genes in vivo. Genes Dev. 9, 1098–1110.PubMedCrossRefGoogle Scholar
  81. 81.
    Chen T., Sun H., Lu J., Zhao Y., Tao D., Li X., Huang B. 2002. Histone acetylation is involved in hsp70 gene transcription regulation in Drosophila melanogaster. Arch. Biochem. Biophys. 408, 171–176.PubMedCrossRefGoogle Scholar
  82. 82.
    Thomson S., Hollis A., Hazzalin C.A., Mahadevan L.C. 2004. Distinct stimulus-specific histone modifications at hsp70 chromatin targeted by the transcription factor heat shock factor-1. Mol. Cell. 15, 585–594.PubMedCrossRefGoogle Scholar
  83. 83.
    Ivaldi M.S., Karam C.S., Corces V.G. 2007. Phosphorylation of histone H3 at Ser10 facilitates RNA polymerase II release from promoter-proximal pausing in Drosophila. Genes Dev. 21, 2818–2831.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Hart C., Zhao K., Laemmli U. 1997. The scs’ boundary element: Characterization of boundary element-associated factors. Mol. Cell. Biol. 17, 999–1009.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Lebedeva L.A., Nabirochkina E.N., Kurshakova M.M., Robert F., Krasnov A.N., Evgen’ev M.B., Kadonaga J.T., Georgieva S.G., Tora L. 2005. Occupancy of the Drosophila hsp70 promoter by a subset of basal transcription factors diminishes upon transcriptional activation. Proc. Natl. Acad. Sci. U.S. A. 102, 18087–18092.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Wu C.H., Yamaguchi Y., Benjamin L.R., Horvat-Gordon M., Washinsky J., Enerly E., Larsson J., Lambertsson A., Handa H., Gilmour D. 2003. NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila. Genes Dev. 17, 1402–1414.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Lee C., Li X., Hechmer A., Eisen M., Biggin M.D., Venters B.J., Jiang C., Li J., Pugh B.F., Gilmour D.S. 2008. NELF and GAGA factor are linked to promoterproximal pausing at many genes in Drosophila. Mol. Cell. Biol. 28, 3290–3300.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Park J.M., Werner J., Kim J.M., Lis J.T., Kim Y.J. 2001. Mediator, not holoenzyme, is directly recruited to the heat shock promoter by HSF upon heat shock. Mol. Cell. 8, 9–19.PubMedCrossRefGoogle Scholar
  89. 89.
    Yang S.H., Nussenzweig A., Li L., Kim D., Ouyang H. Burgman P., Li G.C. 1996. Modulation of thermal induction of hsp70 expression by Ku autoantigen or its individual subunits. Mol. Cell. Biol. 16, 3799–3806.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Kim D., Ouyang H., Yang S.H., Nussenzweig A., Burgman P., Li G.C. 1995. A constitutive heat shock element-binding factor is immunologically identical to the Ku autoantigen. J. Biol. Chem. 270, 15277–15284.PubMedCrossRefGoogle Scholar
  91. 91.
    Nussenzweig A., Chen C., da Costa Soares V., Sanchez M., Sokol K., Nussenzweig M.C., Li G.C. 1996. Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature. 382, 551–555.PubMedCrossRefGoogle Scholar
  92. 92.
    Jacoby D.B., Wensink P.C. 1994. Yolk protein factor 1 is a Drosophila homolog of Ku, the DNA-binding subunit of a DNA-dependent protein kinase from humans. J. Biol. Chem. 269, 11484–11491.PubMedGoogle Scholar
  93. 93.
    Cheney C.M., Shearn A. 1983. Developmental regulation of Drosophila imaginal disc proteins: Synthesis of a heat shock protein under non-heat-shock conditions. Dev. Biol. 95, 325–330.PubMedCrossRefGoogle Scholar
  94. 94.
    Thomas S.R., Lengyel J.A. 1986. Ecdysteroid-regulated heat-shock gene expression during Drosophila melanogaster development. Dev. Biol. 115, 434–438.PubMedCrossRefGoogle Scholar
  95. 95.
    Chen Y., Brandizzi F. 2013. IRE1: ER stress sensor and cell fate executor. Trends Cell. Biol. 23, 547–555.PubMedCrossRefGoogle Scholar
  96. 96.
    Mori K., Kawahara T., Yoshida H., Yanagi H., Yura T. 1996. Signaling from endoplasmic reticulum to nucleus: Transcription factor with a basic-leucine zipper motif is required for the unfolded protein-response pathway. Genes Cells. 1, 803–817.PubMedCrossRefGoogle Scholar
  97. 97.
    Mori K., Ogawa N., Kawahara T., Yanagi H., Yura T. 1998. Palindrome with spacer of one nucleotide is characteristic of the cis-acting unfolded protein response element in Saccharomyces cerevisiae. J. Biol. Chem. 273, 9912–9920.PubMedCrossRefGoogle Scholar
  98. 98.
    Foti D.M., Welihinda A., Kaufman R.J., Lee A.S. 1999. Conservation and divergence of the yeast and mammalian Unfolded Protein Response. J. Biol. Chem. 274, 30402–30409.PubMedCrossRefGoogle Scholar
  99. 99.
    Roy B., Li W.W., Lee A.S. 1996. Calcium-sensitive transcriptional activation of the proximal CCAAT regulatory element of the grp78/BiP promoter by the human nuclear factor CBF/NF-Y. J. Biol. Chem. 271, 28995–29002.PubMedCrossRefGoogle Scholar
  100. 100.
    Roy B., Lee A.S. 1999. The mammalian Endoplasmic Reticulum Stress Response Element consists of an evolutionarily conserved tripartite structure and interacts with a novel stress-inducible complex. Nucleic Acids Res. 27, 1437–1443.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Lee A.S. 2001. The glucose-regulated proteins: Stress induction and clinical applications. Trends Biochem. Sci. 26, 504–510.PubMedCrossRefGoogle Scholar
  102. 102.
    Harding H.P., Novoa I., Zhang Y., Zeng H., Wek R., Schapira M., Ron D. 2000. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell. 6, 1099–1108.PubMedCrossRefGoogle Scholar
  103. 103.
    Arnould T., Michel S., Renard P. 2015. Mitochondria retrograde signaling and the UPRmt: Where are we in mammals? Int. J. Mol. Sci. 16, 18224–18251.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Bonner J.J., Pardue M.L. 1977. Polytene chromosome puffing and in situ hybridization measure different aspects of RNA metabolism. Cell. 12, 227–234.PubMedCrossRefGoogle Scholar
  105. 105.
    Bonner J.J., Berninger M., Pardue M.L. 1978. Transcription of polytene chromosomes and of the mitochondrial genome in Drosophila melanogaster. Cold Spring Harb. Symp. Quant. Biol. 42, 803–814.PubMedCrossRefGoogle Scholar
  106. 106.
    Kruger C., Benecke B.J. 1981. In vitro translation of Drosophila heat-shock and non-heat-shock mRNAs in heterologous and homologous cell-free systems. Cell. 23, 595–603.PubMedCrossRefGoogle Scholar
  107. 107.
    Venetianer A., Marie-Francoise D., Nguyen V.T., Bellier S., Seo S.J., Bensaud O. 1995. Phosphorylation state of the RNA polymerase II C-terminal domen (CTD) in heat shocked cellsPossible involvement of the stress-activated mitogen-activated protein (MAP) kinases. Eur. J. Biochem. 233, 83–92.PubMedCrossRefGoogle Scholar
  108. 108.
    Dubois M.F., Marshall N.F., Nguyen V.T., Dacmus G.K., Bonnet F., Dahmus M.E., Bensaude O. 1999. Heat shock of HeLa cells inactivates a nuclear protein phosphatase specific for dephosphorylation of the C-terminal domen of RNA polymerase II. Nucleic Acids Res. 27, 1338–1344.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Singh I.S., He J.R., Calderwood S., Hasday J.D. 2002. A high affinity HSF-1 binding site in the 5'-untranslated region of the murine tumor necrosis factor-alpha gene is a transcriptional repressor. J. Biol. Chem. 277, 4981–4988.PubMedCrossRefGoogle Scholar
  110. 110.
    Place R.F., Noonan E.J. 2014. Non-coding RNAs turn up the heat: An emerging layer of novel regulators in the mammalian heat shock response. Cell Stress Chaperones. 19, 159–172.PubMedCrossRefGoogle Scholar
  111. 111.
    Vogel J.L., Parsell D.A., Lindquist S. 1995. Heatshock proteins Hsp104 and Hsp70 reactivate mRNA splicing after heat inactivation. Curr. Biol. 5, 306–317.PubMedCrossRefGoogle Scholar
  112. 112.
    Sheikh M.S., Fornace A.J. 1999. Regulation of translation following stress. Oncogene. 18, 6421–6428.Google Scholar
  113. 113.
    Duncan R.F., Cavener D.R., Qu S. 1995. Heat Shock effects on phosphorylation of protein synthesis initiation factor proteins eIF4E and eIF2-alpha in Drosophila. Biochemistry. 34, 2985–2997.PubMedCrossRefGoogle Scholar
  114. 114.
    Menon V., Thomason D.B. 1995. Heat-down tilt increases rat cardiac muscle eIF2α phosphorylation. Am. J. Physiol. 269, 802–804.Google Scholar
  115. 115.
    Gallie D.R., Le H., Caldwell C, Tanduay R.L., Hoang N.X., Browning K.S. 1997. The phosphorylation state of translation initiation factors is regulated developmentally and following heat shock in wheat. J. Biol. Chem. 272, 1046–1053.PubMedCrossRefGoogle Scholar
  116. 116.
    Vries R.G., Flynn A., Patel J.C., Wang X., Denton R.M., Proud C.G. 1997. Heat shock increases the association of binding protein-1 with initiation factor 4E. J. Biol. Chem. 272, 32779–32784.PubMedCrossRefGoogle Scholar
  117. 117.
    Yueh A., Schneider R.J. 2000. Translation by ribosome shunting on adenovirus and hsp70 mRNAs facilitated by complementarity to 18S rRNA. Genes Dev. 14, 414–421.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Rubtsova M.P., Sizova D.V., Dmitriev S.E., Ivanov D.S., Prassolov V.S., Shatsky I.N. 2003. Distinctive properties of the 5'-untranslated region of human hsp70 mRNA. J. Biol. Chem. 278, 22350–22356.PubMedCrossRefGoogle Scholar
  119. 119.
    Hernández G., Vázquez-Pianzola P., Sierra J.M., Rivera-Pomar R. 2004. Internal ribosome entry site drives cap-independent translation of reaper and heat shock protein 70 mRNAs in Drosophila embryos. RNA. 10, 1783–1797.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations