Advertisement

Molecular Biology

, Volume 51, Issue 3, pp 465–473 | Cite as

Planar molecular arrangements aid the design of MHC class II binding peptides

  • A. Cortés
  • J. Coral
  • C. McLachlan
  • R. Benítez
  • L. Pinilla
Structural and Functional Analysis of Biopolymers and Their Complexes

Abstract

The coupling between peptides and MHC-II proteins in the human immune system is not well understood. This work presents an evidence-based hypothesis of a guiding intermolecular force present in every human MHC-II protein (HLA-II). Previously, we examined the spatial positions of the fully conserved residues in all HLA-II protein types. In each one, constant planar patterns were revealed. These molecular planes comprise of amino acid groups of the same chemical species (for example, Gly) distributed across the protein structure. Each amino acid plane has a unique direction and this directional element offers spatial selectivity. Constant within all planes, too, is the presence of an aromatic residue possessing electrons in movement, leading the authors to consider that the planes generate electromagnetic fields that could serve as an attractive force in a single direction. Selection and attraction between HLA-II molecules and antigen peptides would, therefore, be non-random, resulting in a coupling mechanism as effective and rapid as is clearly required in the immune response. On the basis of planar projections onto the HLA-II groove, modifications were made by substituting the key residues in the class II-associated invariant chain peptide—a peptide with a universal binding affinity—resulting in eight different modified peptides with affinities greater than that of the unmodified peptide. Accurate and reliable prediction of MHC class II-binding peptides may facilitate the design of universal vaccine-peptides with greatly enhanced binding affinities. The proposed mechanisms of selection, attraction and coupling between HLA-II and antigen peptides are explained further in the paper.

Keywords

PECC MHC class II HLA-II binding affinity CLIP peptide electromagnetic field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reinherz E.L., Tan K., Tang L., Kern P., Liu J.-h., Xiong Y., Hussey R.E., Smolyar A., Hare B., Zhang R. 1999. The crystal structure of a T cell receptor in complex with peptide and MHC class II. Science. 286, 1913–1921.CrossRefPubMedGoogle Scholar
  2. 2.
    Chicz R.M., Urban R.G., Gorga J.C., Vignali D., Lane W.S., Strominger J.L. 1993. Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J. Exp. Med. 178, 27–47.CrossRefPubMedGoogle Scholar
  3. 3.
    Jones E.Y., Fugger L., Strominger J.L., Siebold C. 2006. MHC class II proteins and disease: A structural perspective. Nat. Rev. Immunol. 6, 271–282.CrossRefPubMedGoogle Scholar
  4. 4.
    Brown J.H., Jardetzky T.S., Gorga J.C., Stern L.J., Urban R.G., Strominger J.L., Wiley D.C. 1993. Threedimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature. 364, 33–39.CrossRefPubMedGoogle Scholar
  5. 5.
    Leckband D. 2000. Measuring the forces that control protein interactions. Annu. Rev. Bioph. Biom. 29, 1–26.CrossRefGoogle Scholar
  6. 6.
    Beretta S., Chirico G., Baldini G. 2000. Short-range interactions of globular proteins at high ionic strengths. Macromolecules. 33, 8663–8670.CrossRefGoogle Scholar
  7. 7.
    Bischof M., Del Giudice E. 2013. Communication and the emergence of collective behavior in living organisms: A quantum approach. Mol. Biol. Int. 2013, 987549. doi 10.1155/2013/987549CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Melkikh A.V. 2013. Biological complexity, quantum coherent states and the problem of efficient transmission of information inside a cell. Biosystems. 111, 190–198.CrossRefPubMedGoogle Scholar
  9. 9.
    Ćosić I., Pirogova E., Vojisavljević V., Fang Q. 2006. Electromagnetic properties of biomolecules. FME Trans. 34, 71–80.Google Scholar
  10. 10.
    Pirogova E., Cosic I., Vojisavljevic V. 2009. Biological effects of electromagnetic radiation. In: Biomedical Engineering. Ed. Barros de Mello C.A.InTechOpen, pp. 87–106. doi 10.5772/787810.5772/7878Google Scholar
  11. 11.
    Vojisavljevic V., Pirogova E., Cosic I. 2007. Influence of electromagnetic radiation on enzyme kinetics. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, pp. 5021–5024.PubMedGoogle Scholar
  12. 12.
    Vojisavljevic V., Pirogova E., Cosic I. 2010. Review of studies on modulating enzyme activity by low intensity electromagnetic radiation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, pp. 835–838. doi 10.1109/IEMBS.2010.5626786PubMedGoogle Scholar
  13. 13.
    Cortés A., Coral J., Benítez Benítez R. 2013. Hallazgo de patrones para péptidos-vacuna con capacidad de acople universal en moléculas de HLA-II. Acta Bioquim. Clin. L. 47, 541–549.Google Scholar
  14. 14.
    Cortes A., Coral J. 2015. Campos electromagneticos planares permiten explicar el acople entre peptidos y moleculas de HLA-II. Acta Bioquim. Clin. L. 49, 221–228.Google Scholar
  15. 15.
    Wiesner M., Stepniak D., de Ru A.H., Moustakis A.K., Drijfhout J.W., Papadopoulos G.K., van Veelen P.A., Koning F. 2008. Dominance of an alternative CLIP sequence in the celiac disease associated HLA-DQ2 molecule. Immunogenetics. 60, 551–555.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Neefjes J., Jongsma M.L., Paul P., Bakke O. 2011. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 11, 823–836.PubMedGoogle Scholar
  17. 17.
    Bordner A., Mittelmann H. 2010. Prediction of the binding affinities of peptides to class II MHC using a regularized thermodynamic model. BMC Bioinform. 11, 41.CrossRefGoogle Scholar
  18. 18.
    Bordner A., Mittelmann H. 2010. MultiRTA: A simple yet reliable method for predicting peptide binding affinities for multiple class II MHC allotypes. BMC Bioinform. 11, 482.CrossRefGoogle Scholar
  19. 19.
    Painter C.A., Negroni M.P., Kellersberger K.A., Zavala-Ruiz Z., Evans J.E., Stern L.J. 2011. Conformational lability in the class II MHC 310 helix and adjacent extended strand dictate HLA-DM susceptibility and peptide exchange. Proc. Natl. Acad. Sci. U.S. A. 108, 19329–19334.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Dai S., Murphy G.A., Crawford F., Mack D.G., Falta M.T., Marrack P., Kappler J.W., Fontenot A.P. 2010. Crystal structure of HLA-DP2 and implications for chronic beryllium disease. Proc. Natl. Acad. Sci. U.S. A. 107, 7425–7430.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hennecke J., Carfi A., Wiley D.C. 2000. Structure of a covalently stabilized complex of a human αβ T-cell receptor, influenza HA peptide and MHC class II molecule, HLA-DR1. EMBO J. 19, 5611–5624.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yin Y., Li Y., Kerzic M.C., Martin R., Mariuzza R.A. 2011. Structure of a TCR with high affinity for self-antigen reveals basis for escape from negative selection. EMBO J. 30, 1137–1148.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Parry C.S., Gorski J., Stern L.J. 2007. Crystallographic structure of the human leukocyte antigen DRA, DRB3* 0101: Models of a directional alloimmune response and autoimmunity. J. Mol. Biol. 371, 435–446.CrossRefPubMedGoogle Scholar
  24. 24.
    Kim C.-Y., Quarsten H., Bergseng E., Khosla C., Sollid L.M. 2004. Structural basis for HLA-DQ2- mediated presentation of gluten epitopes in celiac disease. Proc. Natl. Acad. Sci. U.S. A. 101, 4175–4179.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Tollefsen S., Hotta K., Chen X., Simonsen B., Swaminathan K., Mathews I.I., Sollid L.M., Kim C.-Y. 2012. Structural and functional studies of trans-encoded HLA-DQ2.3 (DQA1*03:01/DQB1*02:01) protein molecule. J. Biol. Chem. 287, 13611–13619.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Li Y., Huang Y., Lue J., Quandt J.A., Martin R., Mariuzza R.A. 2005. Structure of a human autoimmune TCR bound to a myelin basic protein self-peptide and a multiple sclerosis-associated MHC class II molecule. EMBO J. 24, 2968–2979.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Deng L., Langley R.J., Brown P.H., Xu G., Teng L., Wang Q., Gonzales M.I., Callender G.G., Nishimura M.I., Topalian S.L. 2007. Structural basis for the recognition of mutant self by a tumor-specific, MHC class II–restricted T cell receptor. Nat. Immunol. 8, 398–408.CrossRefPubMedGoogle Scholar
  28. 28.
    Harkiolaki M., Holmes S.L., Svendsen P., Gregersen J.W., Jensen L.T., McMahon R., Friese M.A., Van Boxel G., Etzensperger R., Tzartos J.S. 2009. T cell-mediated autoimmune disease due to low-affinity crossreactivity to common microbial peptides. Immunity. 30, 348–357.CrossRefPubMedGoogle Scholar
  29. 29.
    Sethi D.K., Schubert D.A., Anders A.-K., Heroux A., Bonsor D.A., Thomas C.P., Sundberg E.J., Pyrdol J., Wucherpfennig K.W. 2011. A highly tilted binding mode by a self-reactive T cell receptor results in altered engagement of peptide and MHC. J. Exp. Med. 208, 91–102.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Yin Y., Wang X.X., Mariuzza R.A. 2012. Crystal structure of a complete ternary complex of T-cell receptor, peptide–MHC, and CD4. Proc. Natl. Acad. Sci. U.S. A. 109, 5405–5410.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Siebold C., Hansen B.E., Wyer J.R., Harlos K., Esnouf R.E., Svejgaard A., Bell J.I., Strominger J.L., Jones E.Y., Fugger L. 2004. Crystal structure of HLADQ0602 that protects against type 1 diabetes and confers strong susceptibility to narcolepsy. Proc. Natl. Acad. Sci. U.S. A. 101, 1999–2004.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Broughton S.E., Petersen J., Theodossis A., Scally S.W., Loh K.L., Thompson A., van Bergen J., Kooy-Winkelaar Y., Henderson K.N., Beddoe T. 2012. Biased T cell receptor usage directed against human leukocyte antigen DQ8-restricted gliadin peptides is associated with celiac disease. Immunity. 37, 611–621.CrossRefPubMedGoogle Scholar
  33. 33.
    Murthy V.L., Stern L.J. 1997. The class II MHC protein HLA-DR1 in complex with an endogenous peptide: Implications for the structural basis of the specificity of peptide binding. Structure. 5, 1385–1396.CrossRefPubMedGoogle Scholar
  34. 34.
    Li Y., Depontieu F.R., Sidney J., Salay T.M., Engelhard V.H., Hunt D.F., Sette A., Topalian S.L., Mariuzza R.A. 2010. Structural basis for the presentation of tumor-associated MHC class II-restricted phosphopeptides to CD4+ T cells. J. Mol. Biol. 399, 596–603.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yin L., Crawford F., Marrack P., Kappler J.W., Dai S. 2012. T-cell receptor (TCR) interaction with peptides that mimic nickel offers insight into nickel contact allergy. Proc. Natl. Acad. Sci. U.S. A. 109, 18517–18522.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Dessen A., Lawrence C.M., Cupo S., Zaller D.M., Wiley D.C. 1997. X-ray crystal structure of HLA-DR4 (DRA* 0101, DRB1* 0401) complexed with a peptide from human collagen II. Immunity. 7, 473–481.CrossRefPubMedGoogle Scholar
  37. 37.
    Lang H.L., Jacobsen H., Ikemizu S., Andersson C., Harlos K., Madsen L., Hjorth P., Sondergaard L., Svejgaard A., Wucherpfennig K. 2002. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat. Immunol. 3, 940–943.CrossRefPubMedGoogle Scholar
  38. 38.
    Wang M., Claesson M.H. 2014. Classification of human leukocyte antigen (HLA) supertypes. Methods Mol. Biol. 1184, 309–317. doi 10.1007/978-1-4939-1115-8_17CrossRefPubMedGoogle Scholar
  39. 39.
    Kautsch S.J. 2006. The Nature of Flat Galaxies. Basel: Univ. of Basel Press.Google Scholar
  40. 40.
    Zhu Q., Vera C., Asaro R.J., Sche P., Sung L.A. 2007. A hybrid model for erythrocyte membrane: A single unit of protein network coupled with lipid bilayer. Biophys. J. 93, 386–400.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • A. Cortés
    • 1
  • J. Coral
    • 1
  • C. McLachlan
    • 1
  • R. Benítez
    • 2
  • L. Pinilla
    • 3
  1. 1.Department of Molecular Physics, Synthetic Vaccine and New Drug Research InstituteIVSIPopayánColombia
  2. 2.Department of Chemistry, Natural Product Chemistry Research GroupUniversity of CaucaPopayánColombia
  3. 3.Faculty of MedicineNational University of ColombiaBogotáColombia

Personalised recommendations