Molecular Biology

, Volume 51, Issue 3, pp 389–392 | Cite as

Increase in the concentration of sEH protein in renal medulla of ISIAH rats with inherited stress-induced arterial hypertension

  • T. O. Abramova
  • M. A. Ryazanova
  • E. V. Antonov
  • O. E. Redina
  • A. L. Markel
Molecular Cell Biology


The concentration of soluble epoxide hydrolase (sEH) protein was studied in renal medulla of adult rats from hypertensive ISIAH strain and normotensive WAG strain. The sEH is a key enzyme in metabolism of epoxyeicosatrienoic acids capable of activating endothelial NO-synthase and nitrogen oxide formation, and therefore being vasodilators. An increase in the sEH protein concentration (that we found) allows one to assume that the oxidative stress is increased in the renal medulla of hypertensive rats, and the bloodflow is decreased.


soluble epoxide hydrolase ELISA real time PCR arterial hypertension renal medulla ISIAH rat strain 



arterial pressure


soluble epoxide hydrolase


epoxyeicosatrienoic acids


gene encoding soluble epoxide hydrolase


spontaneously hypertensive rats


Dahl salt-sensitive rats


real time PCR


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu Z., Davis B.B., Morisseau C., Hammock B.D., Olson J.L., Kroetz D.L., Weiss R.H. 2004. Vascular localization of soluble epoxide hydrolase in the human kidney. Am. J. Physiol. Renal. Physiol. 286, F720–F726.CrossRefPubMedGoogle Scholar
  2. 2.
    Hercule H.C., Schunck W.H., Gross V., Seringer J., Leung F.P., Weldon S.M., da Costa Goncalves A.C., Huang Y., Luft F.C., Gollasch M. 2009. Interaction between P450 eicosanoids and nitric oxide in the control of arterial tone in mice. Arterioscler. Thromb. Vasc. Biol. 29, 54–60.CrossRefPubMedGoogle Scholar
  3. 3.
    Campbell W.B., Fleming I. 2010. Epoxyeicosatrienoic acids and endothelium-dependent responses. Pflugers Arch. 459, 881–895.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pfister S.L., Gauthier K.M., Campbell W.B. 2010. Vascular pharmacology of epoxyeicosatrienoic acids. Adv. Pharmacol. 60, 27–59.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Panigrahy D., Greene E.R., Pozzi A., Wang D.W., Zeldin D.C. 2011. EET signaling in cancer. Cancer Metastasis Rev. 30, 525–540.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Node K., Huo Y., Ruan X., Yang B., Spiecker M., Ley K., Zeldin D.C., Liao J.K. 1999. Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science. 285, 1276–1279.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Harris T.R., Hammock B.D. 2013. Soluble epoxide hydrolase: Gene structure, expression and deletion. Gene. 526, 61–74.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yu Z., Xu F., Huse L.M., Morisseau C., Draper A.J., Newman J.W., Parker C., Graham L., Engler M.M., Hammock B.D., Zeldin D.C., Kroetz D.L. 2000. Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids. Circ. Res. 87, 992–998.CrossRefPubMedGoogle Scholar
  9. 9.
    Chiamvimonvat N., Ho C.M., Tsai H.J., Hammock B.D. 2007. The soluble epoxide hydrolase as a pharmaceutical target for hypertension. J. Cardiovasc. Pharmacol. 50, 225–237.CrossRefPubMedGoogle Scholar
  10. 10.
    Jung O., Brandes R.P., Kim I.H., Schweda F., Schmidt R., Hammock B.D., Busse R., Fleming I. 2005. Soluble epoxide hydrolase is a main effector of angiotensin II-induced hypertension. Hypertension. 45, 759–765.CrossRefPubMedGoogle Scholar
  11. 11.
    Loch D., Hoey A., Morisseau C., Hammock B.O., Brown L. 2007. Prevention of hypertension in DOCA-salt rats by an inhibitor of soluble epoxide hydrolase. Cell Biochem. Biophys. 47, 87–98.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Imig J.D. 2005. Epoxide hydrolase and epoxygenase metabolites as therapeutic targets for renal diseases. Am. J. Physiol. Renal Physiol. 289, F496–F503.CrossRefPubMedGoogle Scholar
  13. 13.
    Honetschlagerova Z., Huskova Z., Vanourkova Z., Sporkova A., Kramer H.J., Hwang S.H., Tsai H.J., Hammock B.D., Imig J.D., Cervenka L., Kopkan L. 2011. Renal mechanisms contributing to the antihypertensive action of soluble epoxide hydrolase inhibition in Ren-2 transgenic rats with inducible hypertension. J. Physiol. 589, 207–219.CrossRefPubMedGoogle Scholar
  14. 14.
    Huang H., Morisseau C., Wang J., Yang T., Falck J.R., Hammock B.D., Wang M.H. 2007. Increasing or stabilizing renal epoxyeicosatrienoic acid production attenuates abnormal renal function and hypertension in obese rats. Am. J. Physiol. Renal Physiol. 293, F342–F349.CrossRefPubMedGoogle Scholar
  15. 15.
    Li J., Carroll M.A., Chander P.N., Falck J.R., Sangras B., Stier C.T. 2008. Soluble epoxide hydrolase inhibitor, AUDA, prevents early salt-sensitive hypertension. Front. Biosci. 13, 3480–3487.CrossRefPubMedGoogle Scholar
  16. 16.
    Qiu H., Li N., Liu J.Y., Harris T.R., Hammock B.D., Chiamvimonvat N. 2011. Soluble epoxide hydrolase inhibitors and heart failure. Cardiovasc. Ther. 29, 99–111.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Monti J., Fischer J., Paskas S., Heinig M., Schulz H., Gosele C., Heuser A., Fischer R., Schmidt C., Schirdewan A., Gross V., Hummel O., Maatz H., Patone G., Saar K., et al. 2008. Soluble epoxide hydrolase is a susceptibility factor for heart failure in a rat model of human disease. Nat. Genet. 40, 529–537.CrossRefPubMedGoogle Scholar
  18. 18.
    Manhiani M., Quigley J.E., Knight S.F., Tasoobshirazi S., Moore T., Brands M.W., Hammock B.D., Imig J.D. 2009. Soluble epoxide hydrolase gene deletion attenuates renal injury and inflammation with DOCA-salt hypertension. Am. J. Physiol. Renal. Physiol. 297, F740‒F748.Google Scholar
  19. 19.
    Cowley A.W.J., Mattson D.L., Lu S., Roman R.J. 1995. The renal medulla and hypertension. Hypertension. 25, 663–673.CrossRefPubMedGoogle Scholar
  20. 20.
    Miyata N., Cowley A.W.J. 1999. Renal intramedullary infusion of L-arginine prevents reduction of medullary blood flow and hypertension in Dahl salt-sensitive rats. Hypertension. 33, 446–450.CrossRefPubMedGoogle Scholar
  21. 21.
    Spector A.A., Fang X., Snyder G.D., Weintraub N.L. 2004. Epoxyeicosatrienoic acids (EETs): Metabolism and biochemical function. Prog. Lipid Res. 43, 55–90.CrossRefPubMedGoogle Scholar
  22. 22.
    Koeners M.P., Wesseling S., Ulu A., Sepalveda R.L., Morisseau C., Braam B., Hammock B.D., Jaap A., Joles J.P. 2011. Soluble epoxide hydrolase in the generation and maintenance of high blood pressure in spontaneously hypertensive rats. Am. J. Physiol. Endocrinol. Metab. 300, 691–698.CrossRefGoogle Scholar
  23. 23.
    Imig J.D., Zhao X., Capdevila J.H., Morisseau C., Hammock B.D. 2002. Soluble epoxide hydrolase inhibition lowers arterial blood pressure in angiotensin II hypertension. Hypertension. 39, 690–694.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhao X., Yamamoto T., Newman J.W., Kim I.H., Watanabe T., Hammock B.D., Stewart J., Pollock J.S., Pollock D.M., Imig J.D. 2004. Soluble epoxide hydrolase inhibition protects the kidney from hypertensioninduced damage. J. Am. Soc. Nephrol. 15, 1244–1253.PubMedGoogle Scholar
  25. 25.
    Kopkan L., Huskova Z., Sporkova A., Varcabova S., Honetschlagerova Z., Hwang S.H., Tsai H.J., Hammock B.D., Imig J.D., Kramer H.J., Burgelova M., Vojtiskova A., Kujal P., Vernerova Z., Cervenka L. 2012. Soluble epoxide hydrolase inhibition exhibits antihypertensive actions independently of nitric oxide in mice with renovascular hypertension. Kidney Blood Press. Res. 35, 595–607.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Markel A.L., Maslova L.N., Shishkina G.T., Bulygina V.V., Machanova N.A., Jacobson G.S. 1999. Developmental influences on blood pressure regulation in ISIAH rats. In: Development of the Hypertensive Phenotype: Basic and Clinical Studies, vol. 19. Eds. McCarty R., Blizard D.A., Chevalier R.L., Amsterdam: Elsevier, pp. 493–526.Google Scholar
  27. 27.
    Markel A.L., Redina O.E., Gilinsky M.A., Dymshits G.M., Kalashnikova E.V., Khvorostova Y.V., Fedoseeva L.A., Jacobson G.S. 2007. Neuroendocrine profiling in inherited stress-induced arterial hypertension rat strain with stress-sensitive arterial hypertension. J. Endocrinol. 195, 439–450.CrossRefPubMedGoogle Scholar
  28. 28.
    Shmerling M.D., Filyushina E.E., Lazarev V.A., Buzueva I.I., Markel A.L., Yakobson G.S. 2001. Ultrastructural features of kidney corpuscles in rats with hereditary stress-induced arterial hypertension. Morfologiya. 120, 70–74.Google Scholar
  29. 29.
    Filyushina E.E., Shmerling M.D., Buzueva I.I., Lazarev V.A., Markel A.L., Yakobson G.S. 2013. Structural characteristics of renomedullary interstitial cells of hypertensive ISIAH rats. Bull Exp. Biol. Med. 155 (3), 4087–412.CrossRefGoogle Scholar
  30. 30.
    Redina O.E., Smolenskaya S.E., Abramova T.O., Ivanova L.N., Markel A.L. 2015. Differential transcriptional activity of kidney genes in hypertensive ISIAH and normotensive WAG rats. Clin. Exp. Hypertens. 37, 249–259.CrossRefPubMedGoogle Scholar
  31. 31.
    Abramova T.O., Redina O.E., Smolenskaya S.E., Markel A.L. 2013. Elevated expression of the Ephx2 mRNA in the kidney of hypertensive ISIAH rats. Mol. Biol. (Moscow). 47 (6), 821–826.CrossRefGoogle Scholar
  32. 32.
    Redina O.E., Machanova N.A., Efimov V.M., Markel A.L. 2006. Rats with inherited stress-induced arterial hypertension (ISIAH strain) display specific quantitative trait loci for blood pressure and for body and kidney weight on chromosome 1. Clin. Exp. Pharmacol. Physiol. 33, 456–464.CrossRefPubMedGoogle Scholar
  33. 33.
    Redina O.E., Smolenskaya S.E., Maslova L.N., Markel A.L. 2013. The genetic control of blood pressure and body composition in rats with stress-sensitive hypertension. Clin. Exp. Hypertens. 35, 484–495.CrossRefPubMedGoogle Scholar
  34. 34.
    Fedoseeva L.A., Ryazanova M.A., Ershov N.I., Markel A.L., Redina O.E. 2016. Comparative transcriptional profiling of renal cortex in rats with inherited stress-induced arterial hypertension and normotensive Wistar Albino Glaxo rats. BMC Genet. 17, Suppl. 1, 12.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ginzinger D.G. 2002. Gene quantification using realtime quantitative PCR: An emerging technology hits the mainstream. Exp. Hematol. 30, 503–512.CrossRefPubMedGoogle Scholar
  36. 36.
    O’Connor P.M., Cowley A.W.J. 2010. Modulation of pressure-natriuresis by renal medullary reactive oxygen species and nitric oxide. Curr. Hypertens. Rep. 12, 86–92.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Cowley A.W.J., Abe M., Mori T., O’Connor P.M., Ohsaki Y., Zheleznova N.N. 2015. Reactive oxygen species as important determinants of medullary flow, sodium excretion, and hypertension. Am. J. Physiol. Renal Physiol. 308, F179–F197.CrossRefPubMedGoogle Scholar
  38. 38.
    Bobko A.A., Sergeeva S.V., Bagryanskaya E.G., Markel A.L., Khramtsov V.V., Reznikov V.A., Kolosova N.G. 2005. 19F NMR measurements of NO production in hypertensive ISIAH and OXYS rats. Biochem. Biophys. Res. Commun. 330, 367–370.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • T. O. Abramova
    • 1
  • M. A. Ryazanova
    • 1
  • E. V. Antonov
    • 1
  • O. E. Redina
    • 1
  • A. L. Markel
    • 1
    • 2
  1. 1.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations