Advertisement

Molecular Biology

, Volume 50, Issue 5, pp 645–648 | Cite as

Metagenomics and biodiversity of sphagnum bogs

  • L. Yu. Rusin
Reviews

Abstract

Biodiversity of sphagnum bogs is one of the richest and less studied, while these ecosystems are among the top ones in ecological, conservation, and economic value. Recent studies focused on the prokaryotic consortia associated with sphagnum mosses, and revealed the factors that maintain sustainability and productivity of bog ecosystems. High-throughput sequencing technologies provided insight into functional diversity of moss microbial communities (microbiomes), and helped to identify the biochemical pathways and gene families that facilitate the spectrum of adaptive strategies and largely foster the very successful colonization of the Northern hemisphere by sphagnum mosses. Rich and valuable information obtained on microbiomes of peat bogs sets off the paucity of evidence on their eukaryotic diversity. Prospects and expectations of reliable assessment of taxonomic profiles, relative abundance of taxa, and hidden biodiversity of microscopic eukaryotes in sphagnum bog ecosystems are briefly outlined in the context of today’s metagenomics.

Keywords

biodiversity metagenomics sphagnum bogs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Soudzilovskaia N.A., Cornelissen J.H.C., During H.J., Van Logtestijn R.S.P, Lang S.I., Aerts, R. 2010. Similar cation exchange capacities among bryophyte species refute a presumed mechanism of peatland acidification. Ecology. 91, 2716–2726.CrossRefPubMedGoogle Scholar
  2. 2.
    Gorham E. 1991. Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1, 182–195.CrossRefGoogle Scholar
  3. 3.
    O’Neill K.P. 2000. Role of bryophyte-dominated ecosystems in the global carbon budget. In: Bryophyte Biology. Eds. Shaw A.J., Goffinet B. Cambridge: Cambridge Univ. Press, pp. 344–368.CrossRefGoogle Scholar
  4. 4.
    Strack M. 2008. Peatlands and Climate Change. Jyvaskyla, Finland: International Peat Society.Google Scholar
  5. 5.
    Dise N.B. 2009. Peatland response to global change. Science. 326, 810.CrossRefPubMedGoogle Scholar
  6. 6.
    Joosten H., Couwenberg J. 2009. Are Emission Reductions from Peatlands MRV-Able? Eds, The Netherlandsde: Wetlands International.Google Scholar
  7. 7.
    Fyfe R.M. 2006. Sustainable conservation and management of the historic environment record in upland peat: A view from Exmoor. Int. J. Biodivers. Sci. Management. 2, 146–149.CrossRefGoogle Scholar
  8. 8.
    Van Der Putten N., Verbruggen C., Ochyra R., Spassov S., De Beaulieu J.L., De Dapper M., Thouveny N. 2009. Peat bank growth, Holocene palaeoecology and climate history of South Georgia (sub-Antarctica), based on a botanical macrofossil record. Quat. Sci. Rev. 28, 65–79.CrossRefGoogle Scholar
  9. 9.
    Fyfe R.M. 2012. Bronze Age landscape dynamics: Spatially detailed pollen analysis from a ceremonial complex. J. Archaeol. Sci. 39, 2764–2773.CrossRefGoogle Scholar
  10. 10.
    Davies H., Fyfe R.M., Charman D. 2015. Does peatland drainage damage the palaeoecological record? Rev. Palaeobot. Palynol. 221, 92–105.CrossRefGoogle Scholar
  11. 11.
    Berg G., Zachow C., Müller H., Philipps J., Tilcher, R. 2013. Next-generation bio-products sowing the seeds of success for sustainable agriculture. Agronomy. 3, 648–656.CrossRefGoogle Scholar
  12. 12.
    Bulgarelli D., Schlaeppi K., Spaepen S., van Themaat E.V.L., Schulze-Lefert P. 2013. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838.CrossRefPubMedGoogle Scholar
  13. 13.
    Philippot L., Raaijmakers J.M., Lemanceau P., van der Putten W.H. 2013. Going back to the roots: The microbial ecology of the rhizosphere. Nature Rev. Microbiol. 11, 789–799.CrossRefGoogle Scholar
  14. 14.
    Opelt K., Berg C., Schönmann S., Eberl L., Berg G. 2007. High specificity but contrasting biodiversity of Sphagnum-associated bacterial and plant communities in bog ecosystems independent of the geographical region. ISME J. 1, 502–516.CrossRefPubMedGoogle Scholar
  15. 15.
    Bragina A., Maier S., Berg C., Müller H., Chobot V., Hadacek F., Berg G. 2011. Similar diversity of Alphaproteobacteria and nitrogenase gene amplicons on two related Sphagnum mosses. Front. Microbiol. 2, 275.PubMedGoogle Scholar
  16. 16.
    Bragina A., Berg C., Müller H., Moser D., Berg G. 2013. Insights into functional bacterial diversity and its effects on Alpine bog ecosystem functioning. Sci. Reports. 3, 1955.Google Scholar
  17. 17.
    Raghoebarsing A.A., Smolders A.J., Schmid M.C., Rijpstra W.I.C., Wolters-Arts M., Derksen J., Jetten M.S.M., Schouten S., Sinninghe Damsté J.S., Lamers L.P.M., Roelofs J.G.M., den Camp H.J.M.O., Strous M. 2005. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature. 436, 1153–1156.CrossRefPubMedGoogle Scholar
  18. 18.
    Larmola T., Tuittila E. S., Tiirola M., Nykänen H., Martikainen P.J., Yrjälä K., Tuomivirta T, Fritze H. 2010. The role of Sphagnum mosses in the methane cycling of a boreal mire. Ecology. 91, 2356–2365.CrossRefPubMedGoogle Scholar
  19. 19.
    Kip N., Ouyang W., van Winden J., Raghoebarsing A., van Niftrik L., Pol A., Pan Y., Bodrossy L., van Donselaar E.G., Reichart G.-J., Jetten M.S.M., Sinninghe Damsté J.S., den Camp H.J.M.O. 2011. Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses. Appl. Environ. Microbiol. 77, 5643–5654.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Putkinen A., Larmola T., Tuomivirta T., Siljanen H.M., Bodrossy L., Tuittila E.S., Fritze H. 2012. Water dispersal of methanotrophic bacteria maintains functional methane oxidation in Sphagnum mosses. Front. Microbiol. 3, 15.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Opelt K., Chobot V., Hadacek F., Schönmann S., Eberl L., Berg G. 2007. Investigations of the structure and function of bacterial communities associated with Sphagnum mosses. Environ. Microbiol. 9, 2795–2809.CrossRefPubMedGoogle Scholar
  22. 22.
    Bragina A., Berg C., Cardinale M., Shcherbakov A., Chebotar V., Berg G. 2012. Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle. ISME J. 6, 802–813.CrossRefPubMedGoogle Scholar
  23. 23.
    Bragina A., Oberauner-Wappis L., Zachow C., Halwachs B., Thallinger G.G., Müller H., Berg G. 2014. The Sphagnum microbiome supports bog ecosystem functioning under extreme conditions. Mol. Ecol. 23, 4498–4510.CrossRefPubMedGoogle Scholar
  24. 24.
    Tveit A., Schwacke R., Svenning M.M., Urich T. 2013. Organic carbon transformations in high-Arctic peat soils: Key functions and microorganisms. ISME J. 7, 299–311.CrossRefPubMedGoogle Scholar
  25. 25.
    Delmotte N., Knief C., Chaffron S., Innerebner G., Roschitzki B., Schlapbach R., von Mering C., Vorholt J.A. 2009. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl. Acad. Sci. U. S. A. 106, 16428–16433.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Opelt K., Berg G. 2004. Diversity and antagonistic potential of bacteria associated with bryophytes from nutrient-poor habitats of the Baltic Sea coast. Appl. Environ. Microbiol. 70, 6569–6579.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ochman H., Moran N.A. 2001. Genes lost and genes found: Evolution of bacterial pathogenesis and symbiosis. Science. 292, 1096–1099.CrossRefPubMedGoogle Scholar
  28. 28.
    Thomas T., Rusch D., DeMaere M.Z., Yung P.Y., Lewis M., Halpern A., Heidelberg K.B., Egan S., Steinberg P.D., Kjelleberg S. 2010. Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME J. 4, 1557–1567.CrossRefPubMedGoogle Scholar
  29. 29.
    Berg A., Danielsson Å., Svensson B.H. 2013. Transfer of fixed-N from N2-fixing cyanobacteria associated with the moss Sphagnum riparium results in enhanced growth of the moss. Plant Soil. 362, 271–278.CrossRefGoogle Scholar
  30. 30.
    Kreutz M., Foissner W. 2006. The Sphagnum Ponds of Simmelried in Germany: A Biodiversity Hot-Spot for Microscopic Organisms. Aachen: Shaker Verlag.Google Scholar
  31. 31.
    Fonseca V.G., Carvalho G.R., Sung W., Johnson H.F., Power D.M., Neill S.P., Packer M., Blaxter M.L., Lambshead P.J.D., Thomas W.K., Creer S. 2010. Second-generation environmental sequencing unmasks marine metazoan biodiversity. Nat. Commun. 1, 98.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Stoeck T., Bass D., Nebel M., Christen R., Jones M.D., Breiner H.W., RichardsT.A. 2010. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31.CrossRefPubMedGoogle Scholar
  33. 33.
    Bik H.M., Sung W.A.Y., De Ley P., Baldwin J.G., Sharma J., Rocha-Olivares A.X., Thomas W.K. 2012. Metagenetic community analysis of microbial eukaryotes illuminates biogeographic patterns in deep-sea and shallow water sediments. Mol. Ecol. 21, 1048–1059.CrossRefPubMedGoogle Scholar
  34. 34.
    Logares R., Audic S., Bass D., Bittner L., Boutte C., Christen R., Claverie J.M., Decelle J., Dolan J.R., Dunthorn M., Edvardsen B., Gobet A., Kooistra W.H., Mahé F., Not F., et al. 2014. Patterns of rare and abundant marine microbial eukaryotes. Curr. Biol. 24, 813–821.CrossRefPubMedGoogle Scholar
  35. 35.
    Fonseca V.G., Carvalho G.R., Nichols B., Quince C., Johnson H.F., Neill S.P., Lambshead J.D., Thomas W.K., Power D.M., Creer S. 2014. Metagenetic analysis of patterns of distribution and diversity of marine meiobenthic eukaryotes. Global Ecol. Biogeogr. 23, 1293–1302.CrossRefGoogle Scholar
  36. 36.
    Hajibabaei M., Shokralla S., Zhou X., Singer G. A., Baird D.J. 2011. Environmental barcoding: A next-generation sequencing approach for biomonitoring applications using river benthos. PLoS ONE. 6, e17497.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Nilsson R.H., Kristiansson E., Ryberg M., Hallenberg N., Larsson K.H. 2008. Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol. Bioinform. Online. 4, 193.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Huber J.A., Morrison H.G., Huse S.M., Neal P.R., Sogin M.L., Welch M.D.B. 2009. Effect of PCR amplicon size on assessments of clone library microbial diversity and community structure. Environ. Microbiol. 11, 1292–1302.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Dunthorn M., Otto J., Berger S.A., Stamatakis A., Mahé F., Romac S., de Vargas C., Audic S., BioMarKs Consortium, Stock A., Kauff F., Stoeck T. 2014. Placing environmental next-generation sequencing amplicons from microbial eukaryotes into a phylogenetic context. Mol. Biol. Evol. 31, 993–1009.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Kharkevich Institute of Information Transmission ProblemsRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of BiologyMoscow State UniversityMoscowRussia

Personalised recommendations