Advertisement

Molecular Biology

, Volume 49, Issue 6, pp 810–817 | Cite as

Poised RNA polymerase II and master regulation in Metazoa

  • K. N. KashkinEmail author
  • E. D. Sverdlov
Reviews

Abstract

In this review, we discuss mechanisms of the transcription pausing of RNA polymerase II and its poised state. The important features of poised promoters and chromatin are briefly described. The role of transcription pausing as a discrete and important stage in the regulation of expression of master genes, which control stem-cell differentiation, cell lineage and development in Metazoa, are discussed.

Keywords

RNA polymerase II transcription promoter chromatin master regulation 

Abbreviation

PolII

RNA polymerase II

TSS

transcription start site

ESCs

embryonic stem cells

CTD

C-terminal domain of RNA polymerase II

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Williams L.H., Fromm G., Gokey N.G., et al. 2015. Pausing of RNA polymerase II regulates mammalian developmental potential through control of signaling networks. Mol. Cell. 58, 311–322.CrossRefPubMedGoogle Scholar
  2. 2.
    Xie W., Ling T., Zhou Y., et al. 2012. The chromatin remodeling complex NuRD establishes the poised state of rRNA genes characterized by bivalent histone modifications and altered nucleosome positions. Proc. Natl. Acad. Sci. U. S. A. 109, 8161–8166.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Lim P.S., Li J., Holloway A.F., Rao S. 2013. Epigenetic regulation of inducible gene expression in the immune system. Immunology. 139, 285–293.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Kwak H., Lis J.T. 2013. Control of transcriptional elongation. Annu. Rev. Genet. 47, 483–508.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Gilmour D.S., Lis J.T. 1986. RNA polymerase II interacts with the promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells. Mol. Cell. Biol. 6, 3984–3989.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Rougvie A.E., Lis J.T. 1988. The RNA polymerase II molecule at the 5' end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell. 54, 795–804.PubMedGoogle Scholar
  7. 7.
    Rougvie A.E., Lis J.T. 1990. Postinitiation transcriptional control in Drosophila melanogaster. Mol. Cell. Biol. 10, 6041–6045.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Adelman K., Lis J.T. 2012. Promoter-proximal pausing of RNA polymerase II: Emerging roles in metazoans. Nat. Rev. Genet. 13, 720–731.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Nechaev S., Adelman K. 2011. Pol II waiting in the starting gates: Regulating the transition from transcription initiation into productive elongation. Biochim. Biophys. Acta. 1809, 34–45.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Brookes E., Pombo A. 2009. Modifications of RNA polymerase II are pivotal in regulating gene expression states. EMBO Rep. 10, 1213–1219.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Core L.J., Lis J.T. 2008. Transcription regulation through promoter-proximal pausing of RNA polymerase II. Science. 319, 1791–1792.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Gaertner B., Zeitlinger J. 2014. RNA polymerase II pausing during development. Development. 141, 1179–1183.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Jonkers I., Lis J.T. 2015. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell. Biol. 16, 167–177.CrossRefPubMedGoogle Scholar
  14. 14.
    Heinz S., Romanoski C.E., Benner C., Glass C.K. 2015. The selection and function of cell type-specific enhancers. Nat. Rev. Mol. Cell. Biol. 16, 144–154.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Chan S.S., Kyba M. 2013. What is a master regulator? J. Stem Cell Res. Ther. 3, e114. doi 10.4172/21577633.1000e114Google Scholar
  16. 16.
    Oestreich K.J., Weinmann A.S. 2012. Master regulators or lineage-specifying? Changing views on CD4+ T cell transcription factors. Nat. Rev. Immunol. 12, 799–804.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Xu J., Smale S.T. 2012. Designing an enhancer landscape. Cell. 151, 929–931.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Buckingham M., Rigby P.W. 2014. Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev. Cell. 28, 225–238.CrossRefPubMedGoogle Scholar
  19. 19.
    Ostuni R., Natoli G. 2013. Lineages, cell types and functional states: A genomic view. Curr. Opin. Cell Biol. 25, 759–764.CrossRefPubMedGoogle Scholar
  20. 20.
    Rizzino A. 2009. Sox2 and Oct-3/4: A versatile pair of master regulators that orchestrate the self-renewal and pluripotency of embryonic stem cells. Wiley Interdiscipl. Rev. Syst. Biol. Med. 1, 228–236.CrossRefGoogle Scholar
  21. 21.
    Trompouki E., Bowman T.V., Lawton L.N., et al. 2011. Lineage regulators direct BMP and Wnt pathways to cell-specific programs during differentiation and regeneration. Cell. 147, 577–589.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Mullen A.C., Orlando D.A., Newman J.J., et al. 2011. Master transcription factors determine cell-type-specific responses to TGF-beta signaling. Cell. 147, 565–576.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Massague J., Xi Q. 2012. TGF-beta control of stem cell differentiation genes. FEBS Lett. 586, 1953–1958.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Calero-Nieto F.J., Ng F.S., Wilson N.K., et al. 2014. Key regulators control distinct transcriptional programmes in blood progenitor and mast cells. EMBO J. 33, 1212–1226.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Egloff S., Murphy S. 2008. Cracking the RNA polymerase II CTD code. Trends Genet. 24, 280–288.CrossRefPubMedGoogle Scholar
  26. 26.
    Yamaguchi Y., Shibata H., Handa H. 2013. Transcription elongation factors DSIF and NELF: Promoterproximal pausing and beyond. Biochim. Biophys. Acta. 1829, 98–104.CrossRefPubMedGoogle Scholar
  27. 27.
    Guo J., Price D.H. 2013. RNA polymerase II transcription elongation control. Chem. Rev. 113, 8583–8603.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Thomas M.C., Chiang C.M. 2006. The general transcription machinery and general cofactors. Crit. Rev. Biochem. Mol. Biol. 41, 105–178.CrossRefPubMedGoogle Scholar
  29. 29.
    Gaertner B., Johnston J., Chen K., et al. 2012. Poised RNA polymerase II changes over developmental time and prepares genes for future expression. Cell Rep. 2, 1670–1683.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Lagha M., Bothma J.P., Esposito E., et al. 2013. Paused Pol II coordinates tissue morphogenesis in the Drosophila embryo. Cell. 153, 976–987.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Kwak H., Fuda N.J., Core L.J., Lis J.T. 2013. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science. 339, 950–953.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Juven-Gershon T., Hsu J.Y., Theisen J.W., Kadonaga J.T. 2008. The RNA polymerase II core promoter: The gateway to transcription. Curr. Opin. Cell Biol. 20, 253–259.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Lenhard B., Sandelin A., Carninci P. 2012. Metazoan promoters: Emerging characteristics and insights into transcriptional regulation. Nat. Rev. Genet. 13, 233–245.PubMedGoogle Scholar
  34. 34.
    Saunders A., Ashe H.L. 2013. Taking a pause to reflect on morphogenesis. Cell. 153, 941–943.CrossRefPubMedGoogle Scholar
  35. 35.
    Samarakkody A., Abbas A., Scheidegger A., et al. 2015. RNA polymerase II pausing can be retained or acquired during activation of genes involved in the epithelial to mesenchymal transition. Nucleic Acids Res. 43 (8), 3938–3949.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Lam M.T., Li W., Rosenfeld M.G., Glass C.K. 2014. Enhancer RNAs and regulated transcriptional programs. Trends Biochem. Sci. 39, 170–182.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Maston G.A., Landt S.G., Snyder M., Green M.R. 2012. Characterization of enhancer function from genome-wide analyses. Annu. Rev. Genomics Hum. Genet. 13, 29–57.CrossRefPubMedGoogle Scholar
  38. 38.
    Li Q., Lian S., Dai Z., Xiang Q., Dai X. 2013. BGDB: A database of bivalent genes. Database (Oxford). 2013, bat057.Google Scholar
  39. 39.
    Pan G., Tian S., Nie J., et al. 2007. Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell. 1, 299–312.CrossRefPubMedGoogle Scholar
  40. 40.
    Razin S.V., Gavrilov A.A., Ulyanov S.V. 2015. Transcription-controlling regulatory elements of the eukaryotic genome. Mol. Biol. (Moscow). 49, 212–223.CrossRefGoogle Scholar
  41. 41.
    Xi Q., Wang Z., Zaromytidou A.I., et al. 2011. A poised chromatin platform for TGF-beta access to master regulators. Cell. 147, 1511–1524.PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Chai X., Nagarajan S., Kim K., Lee K., Choi J.K. 2013. Regulation of the boundaries of accessible chromatin. PLoS Genet. 9, e1003778.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Yamamoto J., Hagiwara Y., Chiba K., Isobe T., Narita T., Handa H., Yamaguchi Y. 2014. DSIF and NELF interact with Integrator to specify the correct post-transcriptional fate of snRNA genes. Nat.Commun. 5, 4263.PubMedGoogle Scholar
  44. 44.
    Castelo-Branco G., Amaral P.P., Engstrom P.G., Robson S.C., Marques S.C., Bertone P., Kouzarides T. 2013. The non-coding snRNA 7SK controls transcriptional termination, poising, and bidirectionality in embryonic stem cells. Genome Biol. 14, R98.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Chaffer C.L., Marjanovic N.D., Lee T., et al. 2013. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell. 154, 61–74.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Marjanovic N.D., Weinberg R.A., Chaffer C.L. 2013. Poised with purpose: Cell plasticity enhances tumorigenicity. Cell Cycle. 12, 2713–2714.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Oram S.H., Thoms J., Sive J.I., et al. 2013. Bivalent promoter marks and a latent enhancer may prime the leukaemia oncogene LMO1 for ectopic expression in T-cell leukaemia. Leukemia. 27, 1348–1357.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Eldar A., Elowitz M.B. 2010. Functional roles for noise in genetic circuits. Nature. 467, 167–173.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  1. 1.Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations