Advertisement

Molecular Biology

, Volume 50, Issue 1, pp 81–90 | Cite as

Genes for fibrogenesis in the determination of susceptibility to myocardial infarction

  • I. A. GoncharovaEmail author
  • O. A. Makeeva
  • M. V. Golubenko
  • A. V. Markov
  • N. V. Tarasenko
  • A. A. Sleptsov
  • V. P. Puzyrev
Genomics. Transcriptomics

Abstract

A group of patients with ischemic heart disease and myocardial infarction (N = 156) and a reference population sample (N = 300) were genotyped for 58 single nucleotide polymorphisms (SNPs) in the genes involved in extracellular matrix function and collagen metabolism or associated with cardiovascular diseases and atherosclerotic plaque stability. Genotyping was performed by mass-spectrometry with two multiplex sets of 27 and 31 SNPs. The study revealed different genetic composition of predisposition to cardiovascular disease continuum (CVDC) syntropy (patients with concomitant conditions: hypercholesterolemia, hypertension, and type-II diabetes mellitus, N = 96) and to isolated myocardial infarction (without these conditions, N = 60). Only the KIAA1462 gene (rs3739998) showed associations with both CVDC syntropy (OR = 1.71; 95% CI 1.19–2.45; р = 0.003) and isolated infarction (OR = 1.58; 95% CI 1.05–2.40; р = 0.028). Isolated myocardial infarction was also associated with LIG1 (rs20579) (OR = 2.08; 95% CI 1.06–4.17; р = 0.028) and ADAMDEC1 (rs3765124) (OR = 1.63; 95% CI 1.07–2.50; р = 0.020). CVDC syntropy was associated with CDKN2BAS1 (rs1333049) (OR = 1.48; 95% CI 1.03–2.12; р = 0.029) and APOA2 (rs5082) (OR = 1.47; 95% CI 1.02–2.11; р = 0.035). So, genes involved in fibrogenesis contribute to predisposition to the myocardial infarction as well. Isolated myocardial infarction and CVDC syntropy can be considered as pathogenetically different cardiovascular conditions, with different genes that contribute to the susceptibility.

Keywords

myocardial infarction fibrogenesis cardiovascular disease continuum genetics of concomitant diseases ADAMDEC1 CDKN2BAS1 KIAA1462 LIG1 MTAP 

Abbreviations

MI

myocardial infarction

IHD

ischemic heart disease

ACS

acute coronary syndrome

CVD

cardiovascular diseases

CVDC

cardiovascular disease continuum

SNP

single nucleotide polymorphism

Apo AII

apolipoprotein AII

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Helgadottir A., son G., Manolescu A., Gretarsdottir S., et al. 2007. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 316, 1491–1493.CrossRefPubMedGoogle Scholar
  2. 2.
    Chen Y., Dawes P.T., Packham J.C., Mattey D.L. 2012. Interaction between smoking and functional polymorphism in the TGFB1 gene is associated with ischaemic heart disease and myocardial infarction in patients with rheumatoid arthritis: a cross-sectional study. Arthritis Res. Ther. 14, R81.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hopkins P.N. 2013. Molecular biology of atherosclerosis. Physiol. Rev. 93, 1317–1542.CrossRefPubMedGoogle Scholar
  4. 4.
    Sambrook J., Russell D.W. 2001). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.Google Scholar
  5. 5.
    Agresti A. 2002). Categorical Data Analysis, 2nd ed. New York: Wiley, 91–101.CrossRefGoogle Scholar
  6. 6.
    Mehta C.R., Patel N.R. 1986. Algorithm 643. FEXACT: A Fortran subroutine for Fisher’s exact test on unordered r*c contingency tables. ACM Transact. Mathemat. Software. 12, 154–161.Google Scholar
  7. 7.
    Sham P.C., Purcell S.M. 2014. Statistical power and significance testing in large-scale genetic studies. Nat. Rev. Genet. 15, 335–346.CrossRefPubMedGoogle Scholar
  8. 8.
    Puzyrev V.P. 2011. Phenome-genome relations and pathogenetics of multifactorial diseases. Vestn. Ross. Akad. Med. Nauk. 9, 17–27.PubMedGoogle Scholar
  9. 9.
    Zaki M.E., Amr K.S., Abdel-Hamid M. 2013. APOA2 polymorphism in relation to obesity and lipid metabolism. Cholesterol. 2013, 1–5.CrossRefGoogle Scholar
  10. 10.
    Akashi M., Higashi T., Masuda S., Komori T., Furuse M. 2011. A coronary artery disease-associated gene product, JCAD/KIAA1462, is a novel component of endothelial cell–cell junctions. Biochem. Biophys. Res. Commun. 413, 224–229.CrossRefPubMedGoogle Scholar
  11. 11.
    Erdmann J., Willenborg C., Nahrstaedt J., et al. 2011. Genome-wide association study identifies a new locus for coronary artery disease on chromosome 10p11.23. Eur. Heart. J. 32, 158–168.CrossRefPubMedGoogle Scholar
  12. 12.
    Bentley D.J., Harrison C., Ketchen A.M., et al. 2002. DNA ligase I null mouse cells show normal DNA repair activity but altered DNA replication and reduced genome stability. J. Cell Sci. 115, 1551–1561.PubMedGoogle Scholar
  13. 13.
    Goetz J.D., Motycka T.A., Han M., Jasin M., Tomkinson A.E. 2005. Reduced repair of DNA double-strand breaks by homologous recombination in a DNA ligase I-deficient human cell line. DNA Repair (Amst.). 4, 649–654.CrossRefPubMedGoogle Scholar
  14. 14.
    Linke M.8, May A., Reifenberg K., Haaf T., Zechner U. 2013. The impact of ovarian stimulation on the expression of candidate reprogramming genes in mouse preimplantation embryos. Cytogenet. Genome Res. 139, 71–79.CrossRefPubMedGoogle Scholar
  15. 15.
    Lee Y.C., Morgenstern H., Greenland S., et al. 2008. A case-control study of the association of the polymorphisms and haplotypes of DNA ligase I with lung and upper-aerodigestive-tract cancers. Int. J. Cancer. 122, 1630–1638.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Soni A., Siemann M., Grabos M., Murmann T., Pantelias G.E., Iliakis G. 2014. Requirement for Parp-1 and DNA ligases 1 or 3 but not of Xrcc1 in chromosomal translocation formation by backup end joining. Nucleic Acids Res. 42, 6380–6392.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Buch S.C., Diergaarde B., Nukui T., Day R.S., Siegfried J.M., Romkes M., Weissfeld J.L. 2012. Genetic variability in DNA repair and cell cycle control pathway genes and risk of smoking-related lung cancer. Mol. Carcinog. 51, e11–E20.CrossRefGoogle Scholar
  18. 18.
    Liu Y., Scheurer M.E., El-Zein R., et al. 2009. Association and interactions between DNA repair gene polymorphisms and adult glioma. Cancer Epidemiol. Biomarkers Prev. 18, 204–214.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Doherty J.A., Weiss N.S., Fish S., et al. 2011. Polymorphisms in nucleotide excision repair genes and endometrial cancer risk. Cancer Epidemiol Biomarkers Prev. 20, 1873–1882.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mahmoudi M., Mercer J., Bennett M. 2006. DNA damage and repair in atherosclerosis. Cardiovasc. Res. 71, 259–268.CrossRefPubMedGoogle Scholar
  21. 21.
    Martinet W., Knaapen M.W., De Meyer G.R., Herman A.G., Kockx M.M. 2002. Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation. 106, 927–932.CrossRefPubMedGoogle Scholar
  22. 22.
    Matturri L., Cazzullo A., Turconi P., et al. 2001. Chromosomal alterations in atherosclerotic plaques. Atherosclerosis. 15, 755–761.CrossRefGoogle Scholar
  23. 23.
    Hatzistamou J., Kiaris H., Ergazaki M., Spandidos D.A. 1996. Loss of heterozygosity and microsatellite instability in human atherosclerotic plaques. Biochem. Biophys. Res. Commun. 225, 186–190.CrossRefPubMedGoogle Scholar
  24. 24.
    Gray K., Bennett M. 2011. Role of DNA damage in atherosclerosis: Bystander or participant? Biochem. Pharmacol. 82, 693–700.CrossRefPubMedGoogle Scholar
  25. 25.
    Yu E., Calvert P.A., Mercer J.R., et al. 2013. Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans. Circulation. 128, 702–712.CrossRefPubMedGoogle Scholar
  26. 26.
    Bazo A.P., Salvadori D., Salvadori R.A., et al. 2011. DNA repair gene polymorphism is associated with the genetic basis of atherosclerotic coronary artery disease. Cardiovasc. Pathol. 20, e9–e15.CrossRefGoogle Scholar
  27. 27.
    Gokkusu C., Cakmakoglu B., Dasdemir S., et al. 2013. Association between genetic variants of DNA repair genes and coronary artery disease. Genet. Test. Mol. Biomarkers. 17, 307–313.CrossRefPubMedGoogle Scholar
  28. 28.
    Bates E.M., Fridman W.H., Mueller C.G. 2002. The ADAMDEC1 (decysin) gene structure: evolution by duplication in a metalloprotease gene cluster on chromosome 8p12. Immunogenetics. 54, 96–105.CrossRefPubMedGoogle Scholar
  29. 29.
    Papaspyridonos M., Smith A., Burnand K.G., et al. 2006. Novel candidate genes in unstable areas of human atherosclerotic plaques. Arterioscler. Thromb. Vasc. Biol. 26, 1837–1844.CrossRefPubMedGoogle Scholar
  30. 30.
    Fiotti N., Altamura N., Fisicaro M., et al. 2006. MMP-9 microsatellite polymorphism and susceptibility to carotid arteries atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 26, 1330–1336.CrossRefPubMedGoogle Scholar
  31. 31.
    Wang F., Jin X.P., Zhu M., Lin X.F., Hu X.F., Wang W.F., Han Z., Huang L.Z. 2011. Genotype association of C(–735)T polymorphism of the MMP-2 gene with the risk of carotid atherosclerosis-vulnerable plaque in the Han Chinese population. Vasc. Med. 16, 13–18.CrossRefPubMedGoogle Scholar
  32. 32.
    Clee S.M. 2010). A role for MMP-3 genetic variation in atherosclerosis susceptibility? Atherosclerosis. 208, 30–31.Google Scholar
  33. 33.
    Wang L., Ma Y.T., Xie X., et al. 2012. Interaction between MMP-9 gene polymorphisms and smoking in relation to myocardial infarction in a Uighur population. Clin. Appl. Thromb. Hemost. 18, 72–78.CrossRefPubMedGoogle Scholar
  34. 34.
    Berger M., Moscatelli H., Kulle B., et al. 2008. Association of ADAMDEC1 haplotype with high factor VIII levels in venous thromboembolism. Thromb. Haemost. 99, 905–908.PubMedGoogle Scholar
  35. 35.
    O’Shea N.R., Chew T.S., Sewell G., Bloom S., Smith A., Segal A. 2012. PWE-232 ADAMDEC1: A novel molecule in inflammation and bowel disease. Gut. 61, A392.CrossRefGoogle Scholar
  36. 36.
    Pasini F.S., Zilberstein B., Snitcovsky I., et al. 2014. A gene expression profile related to immune dampening in the tumor microenvironment is associated with poor prognosis in gastric adenocarcinoma. J. Gastroenterol. 49, 1453–1466.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ye S., Willeit J., Kronenberg F., Xu Q., Kiechl S. 2008. Association of genetic variation on chromosome 9p21 with susceptibility and progression of atherosclerosis: A population-based, prospective study. J. Am. Coll. Cardiol. 52, 378–384.CrossRefPubMedGoogle Scholar
  38. 38.
    Samani N.J., Erdmann J., Hall A.S., et al. 2007. Genome-wide association analysis of coronary artery disease. N. Engl. J. Med. 357, 443–453.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hinohara K., Nakajima T., Takahashi M., et al. 2008. Replication of the association between a chromosome 9p21 polymorphism and coronary artery disease in Japanese and Korean populations. J. Hum. Genet. 53, 357–359.CrossRefPubMedGoogle Scholar
  40. 40.
    Gu F., Pfeiffer R.M., Bhattacharjee S., Han S.S., et al. 2013. Common genetic variants in the 9p21 region and their associations with multiple tumours. Br. J. Cancer. 108, 1378–1386.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Yang X.C., Zhang Q., Chen M.L., et al. 2009. MTAP and CDKN2B genes are associated with myocardial infarction in Chinese Hans. Clin. Biochem. 42, 1071–1075.CrossRefPubMedGoogle Scholar
  42. 42.
    Huang Y., Ye H., Hong Q., et al. 2014. Association of CDKN2BAS polymorphism rs4977574 with coronary heart disease: A case-control study and a meta-analysis. Int. J. Mol. Sci. 15, 17478–17492.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Yu W., Gius D., Onyango P., Muldoon-Jacobs K., Karp J., Feinberg A.P., Cui H. 2008. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature. 451, 202–206.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Bochenek G., Häsler R., El Mokhtari N.E., et al. 2013. The large non-coding RNA ANRIL, which is associated with atherosclerosis, periodontitis and several forms of cancer, regulates ADIPOR1, VAMP3 and C11ORF10. Hum. Mol. Genet. 22, 4516–4527.CrossRefPubMedGoogle Scholar
  45. 45.
    Wang B., Meng D., Wang J., et al. 2011. Genetic association of polymorphism rs1333049 with gout. Rheumatology (Oxford). 50, 1559–1561.CrossRefPubMedGoogle Scholar
  46. 46.
    Lian J., Ba Y., Dai D., et al. 2014. A replication study and a meta-analysis of the association between the CDKN2A rs1333049 polymorphism and coronary heart disease. J. Atheroscler. Thromb. 21, 1109–1120.CrossRefPubMedGoogle Scholar
  47. 47.
    Hara M., Sakata Y., Nakatani D., et al. 2014. Reduced risk of recurrent myocardial infarction in homozygous carriers of the chromosome 9p21 rs1333049 C risk allele in the contemporary percutaneous coronary intervention era: A prospective observational study. BMJ Open. 4, e005438.CrossRefGoogle Scholar
  48. 48.
    Szpakowicz A., Kiliszek M., Pepinski W., et al. 2014. Polymorphism of 9p21.3 locus is associated with 5-year survival in high-risk patients with myocardial infarction. PLoS ONE. 9, e104635.CrossRefGoogle Scholar
  49. 49.
    Cunnington M.S., Santibanez Koref M., Mayosi B.M., Burn J., Keavney B. 2010. Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression. PLoS Genet. 6, e1000899.CrossRefGoogle Scholar
  50. 50.
    Lv X., Zhang Y., Rao S., et al. 2013. Association between rs10118757(A/G) in methylthioadenosine phosphorylase gene and coronary artery disease in Chinese Hans. Gene. 526, 344–346.CrossRefPubMedGoogle Scholar
  51. 51.
    Murakami S, Kondo Y., Tomisawa K., Nagate T. 1999. Prevention of atherosclerotic lesion development in mice by taurine. Drugs Exp. Clin. Res. 25, 227–234.PubMedGoogle Scholar
  52. 52.
    Kaplan R.C., Kingsley L.A., Gange S.J., et al. 2008. Low CD4+ T-cell count as a major atherosclerosis risk factor in HIV-infected women and men. AIDS. 22, 1615–1624.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Delgado-Lista J., Perez-Jimenez F., Tanaka T., et al. 2007. An apolipoprotein A-II polymorphism (–265T/C, rs5082) regulates postprandial response to a saturated fat overload in healthy men. J. Nutr. 137, 2024–2028.PubMedGoogle Scholar
  54. 54.
    Kim J.B., Deluna A., Mungrue I.N., et al. 2012. The effect of 9p21.3 coronary artery disease locus neighboring genes on atherosclerosis in mice: Kim, Effect of 9p21.3 genes on atherosclerosis. Circulation. 126, 1896–1906.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Xiao J., Zhang F., Wiltshire S., et al. 2008. The apolipoprotein AII rs5082 variant is associated with reduced risk of coronary artery disease in an Australian male population. Atherosclerosis. 199, 333–339.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • I. A. Goncharova
    • 1
    • 2
    Email author
  • O. A. Makeeva
    • 1
    • 2
  • M. V. Golubenko
    • 1
    • 2
  • A. V. Markov
    • 1
  • N. V. Tarasenko
    • 1
  • A. A. Sleptsov
    • 1
  • V. P. Puzyrev
    • 1
  1. 1.Research Institute for Medical GeneticsTomskRussia
  2. 2.Research Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussia

Personalised recommendations