Molecular Biology

, Volume 49, Issue 4, pp 513–519 | Cite as

Rabies vaccines: Current status and prospects for development

  • E. S. Starodubova
  • O. V. Preobrazhenskaia
  • Y. V. Kuzmenko
  • A. A. Latanova
  • E. I. Yarygina
  • V. L. Karpov


Rabies is an infectious disease among humans and animals that remains incurable, despite its longstanding research history. The only way to prevent the disease is prompt treatment, including vaccination as an obligatory component and administration of antirabies immunoglobulin as a supplement. Since the first antirabies vaccination performed in the 19th century, a large number of different rabies vaccines have been developed. Progress in molecular biology and biotechnology enabled the development of effective and safe technologies of vaccine production. Currently, new-generation vaccines are being developed based on recombinant rabies virus strains or on the production of an individual recombinant rabies antigen—glycoprotein (G protein), either as a component of nonpathogenic viruses, or in plants, or in the form of DNA vaccines. In this review, the main modern trends in the development of rabies vaccines have been discussed.


rabies rabies vaccine glycoprotein 



World Health Organization


culturebased rabies vaccine


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. Scholar
  2. 2. Scholar
  3. 3.
    Rupprecht C.E., Plotkin S.A. 2012. Rabies vaccines. In: Vaccines, 6th ed., vol.2. Eds. Plotkin S.A., Orenstein W.A., Offit P.A. Scotland: Elsevier, pp. 646–668.Google Scholar
  4. 4.
    Culbertson C.G., Peck F.B., Jr., Powell H.M. 1956. Duck-embryo rabies vaccine: Study of fixed virus vaccine grown in embryonated duck eggs and killed with beta-propiolactone (BPL). J. Am. Med. Assoc. 162, 1373–1376.CrossRefPubMedGoogle Scholar
  5. 5.
    Kissling R.E. 1958. Growth of rabies virus in non-nervous tissue culture. Proc. Soc. Exp. Biol. Med. 98, 223–225.CrossRefPubMedGoogle Scholar
  6. 6.
    Fenje P. 1960. A rabies vaccine from hamster kidney tissue cultures: Preparation and evaluation in animals. Can. J. Microbiol. 6, 605–609.CrossRefPubMedGoogle Scholar
  7. 7. Scholar
  8. 8.
    Briggs D.J., Nagarajan T., Rupprecht C.E. 2013. Rabies vaccines. In: Rabies: Scientific Basis of the Disease and Its Management, 3rd ed., vol. 13. Ed. Jackson A.C. Oxford: Elsevier, pp. 497–526.Google Scholar
  9. 9. pp_rabies_2010_RU.pdfGoogle Scholar
  10. 10.
    Movsesyants A.A., Ageenko G.B. 2006. Anti-rabies agents used in the Russian Federation. RET Info. 1, 44–45. Scholar
  11. 11.
    Mukhacheva A.V., Movsesyants A.A., Alsynbaev M.M. 2014. Selection of optimal methods for purifying protein substances contained in cultural concentrated purified inactivated antirabies vaccine (KOKAV). Epidemiol. Vaktsinoprofilakt. 3, 84–88.Google Scholar
  12. 12.
    Gribencha S.V., Losin M.A., Gribencha L.F., Nepoklonova I.V. 2012. A new principle of vaccinal virus selection based on the expression level of G protein, the main rabies virus immunogen. Vopr. Virusol. 57, 44–48.PubMedGoogle Scholar
  13. 13.
    Pukhova N.M., Samuilenko A.Ya., Elakov A.L. 2012. Reference preparation for controlling immunogenicity of animal rabies vaccines. Vet. Vrach. 5–7.Google Scholar
  14. 14.
    Losich M.A., Nepoklonova I.V., Mukhin A.N., Raev S.A., Seliverstov A.S., Gribencha S.V., Verkhovskii O.A., Aliper T.I. 2012. Revelopment and immunological properties of Rabifel, a new antirabies vaccine. Ross. Vet. Zh. Melkie Domash. Dikie Zhivotn. 10–14.Google Scholar
  15. 15.
    Avdeeva Zh.I., Alpatova N.A., Akol’zina S.E., Medunitsyn N.V. 2009. Immunoadjuvant effect of cytokines. Tikhook, Med. Zh. 19–22.Google Scholar
  16. 16.
    Liu X., Yang Y., Sun Z., Chen J., Ai J., Dun C., Fu Z.F., Niu X., Guo X. 2014. A recombinant rabies virus encoding two copies of the glycoprotein gene confers protection in dogs against a virulent challenge. PLOS ONE. 9, e87105.CrossRefGoogle Scholar
  17. 17.
    Tao L., Ge J., Wang X., Wen Z., Zhai H., Hua T., Zhao B., Kong D., Yang C., Bu Z. 2011. Generation of a recombinant rabies Flury LEP virus carrying an additional G gene creates an improved seed virus for inactivated vaccine production. Virol. J. 8, 454.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Tuffereau C., Leblois H., Benejean J., Coulon P., Lafay F., Flamand A. 1989. Arginine or lysine in position 333 of ERA and CVS glycoprotein is necessary for rabies virulence in adult mice. Virology. 172, 206–212.CrossRefPubMedGoogle Scholar
  19. 19.
    Faber M., Faber M.L., Papaneri A., Bette M., Weihe E., Dietzschold B., Schnell M.J. 2005. A single amino acid change in rabies virus glycoprotein increases virus spread and enhances virus pathogenicity. J. Virol. 79, 14141–14148.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Dietzschold M.L., Faber M., Mattis J.A., Pak K.Y., Schnell M.J., Dietzschold B. 2004. In vitro growth and stability of recombinant rabies viruses designed for vaccination of wildlife. Vaccine. 23, 518–524.CrossRefPubMedGoogle Scholar
  21. 21.
    Faber M., Li J., Kean R.B., Hooper D.C., Alugupalli K.R., Dietzschold B. 2009. Effective preexposure and postexposure prophylaxis of rabies with a highly attenuated recombinant rabies virus. Proc. Natl. Acad. Sci. U. S. A. 106, 11300–11305.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Schutsky K., Curtis D., Bongiorno E.K., Barkhouse D.A., Kean R.B., Dietzschold B., Hooper D.C., Faber M. 2013. Intramuscular inoculation of mice with the liveattenuated recombinant rabies virus TriGAS results in a transient infection of the draining lymph nodes and a robust, long-lasting protective immune response against rabies. J. Virol. 87, 1834–1841.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Norton J.E. Jr., Lytle A.G., Shen S., Tzvetkov E.P., Dorfmeier C.L., Mc Gettigan J.P. 2014. ICAM-1-based rabies virus vaccine shows increased infection and activation of primary murine B cells in vitro and enhanced antibody titers in-vivo. PLOS ONE. 9, e87098.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Wiktor T.J., Macfarlan R.I., Reagan K.J., Dietzschold B., Curtis P.J., Wunner W.H., Kieny M.P., Lathe R., Lecocq J.P., Mackett M., et al. 1984. Protection from rabies by a vaccinia virus recombinant containing the rabies virus glycoprotein gene. Proc. Natl. Acad. Sci. U. S. A. 81, 7194–7198.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Cliquet F., Barrat J., Guiot A.L., Cael N., Boutrand S., Maki J., Schumacher C.L. 2008. Efficacy and bait acceptance of vaccinia vectored rabies glycoprotein vaccine in captive foxes (Vulpes vulpes), raccoon dogs (Nyctereutes procyonoides), and dogs (Canis familiaris). Vaccine. 26, 4627–4638.CrossRefPubMedGoogle Scholar
  26. 26.
    Weyer J., Rupprecht C.E., Nel L.H. 2009. Poxvirusvectored vaccines for rabies: A review. Vaccine. 27, 7198–7201.CrossRefPubMedGoogle Scholar
  27. 27.
    Poulet H., Minke J., Pardo M.C., Juillard V., Nordgren B., Audonnet J.C. 2007. Development and registration of recombinant veterinary vaccines. The example of the canarypox vector platform. Vaccine. 25, 5606–5612.PubMedGoogle Scholar
  28. 28.
    Amann R., Rohde J., Wulle U., Conlee D., Raue R., Martinon O., Rziha H.J. 2013. A new rabies vaccine based on a recombinant ORF virus (parapoxvirus) expressing the rabies virus glycoprotein. J. Virol. 87, 1618–1630.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Yarosh O.K., Wandeler A.I., Graham F.L., Campbell J.B., Prevec L. 1996. Human adenovirus type 5 vectors expressing rabies glycoprotein. Vaccine. 14, 1257–1264.CrossRefPubMedGoogle Scholar
  30. 30.
    Tims T., Briggs D.J., Davis R.D., Moore S.M., Xiang Z., Ertl H.C., Fu Z.F. 2000. Adult dogs receiving a rabies booster dose with a recombinant adenovirus expressing rabies virus glycoprotein develop high titers of neutralizing antibodies. Vaccine. 18, 2804–2807.CrossRefPubMedGoogle Scholar
  31. 31.
    Xiang Z.Q., Gao G.P., Reyes-Sandoval A., Li Y., Wilson J.M., Ertl H.C. 2003. Oral vaccination of mice with adenoviral vectors is not impaired by preexisting immunity to the vaccine carrier. J. Virol. 77, 10780–10789.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Shen C.F., Lanthier S., Jacob D., Montes J., Beath A., Beresford A., Kamen A. 2012. Process optimization and scale-up for production of rabies vaccine live adenovirus vector (AdRG1.3). Vaccine. 30, 300–306.CrossRefPubMedGoogle Scholar
  33. 33.
    Fehlner-Gardiner C., Rudd R., Donovan D., Slate D., Kempf L., Badcock J. 2012. Comparing ONRAB and RABORAL V-RG® oral rabies vaccine field performance in raccoons and striped skunks, New Brunswick, Canada, and Maine, USA J. Wild. Dis. 48, 157–167.CrossRefGoogle Scholar
  34. 34.
    Yang D.K., Kim H.H., Lee K.W., Song J.Y. 2013. The present and future of rabies vaccine in animals. Clin. Exp. Vaccine Res. 2, 19–25.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Liu Y., Zhang S., Ma G., Zhang F., Hu R. 2008. Efficacy and safety of a live canine adenovirus-vectored rabies virus vaccine in swine. Vaccine. 26, 5368–5372.CrossRefPubMedGoogle Scholar
  36. 36.
    Chen Z., Zhou M., Gao X., Zhang G., Ren G., Gnanadurai C.W., Fu Z.F., He B. 2013. A novel rabies vaccine based on a recombinant parainfluenza virus 5 expressing rabies virus glycoprotein. J. Virol. 87, 2986–2993.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Mc Garvey P.B., Hammond J., Dienelt M.M., Hooper D.C., Fu Z.F., Dietzschold B., Koprowski H., Michaels F.H. 1995. Expression of the rabies virus glycoprotein in transgenic tomatoes. Biotechnology (NY). 13, 1484–1487.CrossRefGoogle Scholar
  38. 38.
    Ashraf S., Singh P.K., Yadav D.K., Shahnawaz M., Mishra S., Sawant S.V., Tuli R. 2005. High level expression of surface glycoprotein of rabies virus in tobacco leaves and its immunoprotective activity in mice. J. Biotechnol. 119, 1–14.CrossRefPubMedGoogle Scholar
  39. 39.
    Yusibov V., Hooper D.C., Spitsin S.V., Fleysh N., Kean R.B., Mikheeva T., Deka D., Karasev A., Cox S., Randall J., et al. 2002. Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine. Vaccine. 20, 3155–3164.CrossRefPubMedGoogle Scholar
  40. 40.
    Rojas-Anaya E., Loza-Rubio E., Olivera-Flores M.T., Gomez-Lim M. 2009. Expression of rabies virus G protein in carrots (Daucus carota). Transgenic Res. 18, 911–919.CrossRefPubMedGoogle Scholar
  41. 41.
    Loza-Rubio E., Rojas E., Gomez L., Olivera M.T., Gomez-Lim M.A. 2008. Development of an edible rabies vaccine in maize using the Vnukovo strain. Dev. Biol. (Basel). 131, 477–482.Google Scholar
  42. 42.
    Loza-Rubio E., Rojas-Anaya E., Lopez J., Olivera Flores M.T., Gomez-Lim M., Tapia-Perez G. 2012. Induction of a protective immune response to rabies virus in sheep after oral immunization with transgenic maize, expressing the rabies virus glycoprotein. Vaccine. 30, 5551–5556.CrossRefPubMedGoogle Scholar
  43. 43.
    Graham B.S. 2013. Advances in antiviral vaccine development. Immunol. Rev. 255, 230–242.CrossRefPubMedGoogle Scholar
  44. 44.
    Kutzler M.A., Weiner D.B. 2008. DNA vaccines: Ready for prime time? Nat. Rev. Genet. 9, 776–788.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Redding L., Weiner D.B. 2009. DNA vaccines in veterinary use. Expert Rev. Vaccines. 8, 1251–1276.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Li L., Saade F., Petrovsky N. 2012. The future of human DNA vaccines. J. Biotechnol. 162, 171–182.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Villarreal D.O., Talbott K.T., Choo D.K., Shedlock D.J., Weiner D.B. 2013. Synthetic DNA vaccine strategies against persistent viral infections. Expert Rev. Vaccines. 12, 537–554.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Kaur M., Garg R., Singh S., Bhatnagar R. 2014. Rabies vaccines: Where do we stand, where are we heading? Exp. Rev. Vaccines. 1–13.Google Scholar
  49. 49.
    Tuchkov I.V., Nikiforov A.K. 2010. DNA immunization against rabies. Probl. Osobo Opasn. Infekts. 104, 74–78.Google Scholar
  50. 50.
    Ferraro B., Morrow M.P., Hutnick N.A., Shin T.H., Lucke C.E., Weiner D.B. 2011. Clinical applications of DNA vaccines: Current progress. Clin. Infect. Dis. 53, 296–302.PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Hutnick N.A., Myles D.J., Bian C.B., Muthumani K., Weiner D.B. 2011. Selected approaches for increasing HIV DNA vaccine immunogenicity in vivo. Curr. Opin. Virol. 1, 233–240.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Saade F., Petrovsky N. 2012. Technologies for enhanced efficacy of DNA vaccines. Expert Rev. Vaccines. 11, 189–209.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Ullas P.T., Desai A., Madhusudana S.N. 2012. Rabies DNA vaccines: Current status and future. World J. Vaccines. 2, 36–45.CrossRefGoogle Scholar
  54. 54.
    Osinubi M.O., Wu X., Franka R., Niezgoda M., Nok A.J., Ogunkoya A.B., Rupprecht C.E. 2009. Enhancing comparative rabies DNA vaccine effectiveness through glycoprotein gene modifications. Vaccine. 27, 7214–7218.CrossRefPubMedGoogle Scholar
  55. 55.
    Tesoro Cruz E., Hernandez Gonzalez R., Alonso Morales R., Aguilar-Setien A. 2006. Rabies DNA vaccination by the intranasal route in dogs. Dev. Biol. (Basel). 125, 221–231.Google Scholar
  56. 56.
    Bahloul C., Taieb D., Diouani M.F., Ahmed S.B., Chtourou Y., B’ Chir B I., Kharmachi H., Dellagi K. 2006. Field trials of a very potent rabies DNA vaccine which induced long lasting virus neutralizing antibodies and protection in dogs in experimental conditions. Vaccine. 24, 1063–1072.CrossRefPubMedGoogle Scholar
  57. 57.
    Kaur M., Saxena A., Rai A., Bhatnagar R. 2010. Rabies DNA vaccine encoding lysosome-targeted glycoprotein supplemented with Emulsigen-D confers complete protection in preexposure and postexposure studies in BALB/c mice. FASEB J. 24, 173–183.CrossRefPubMedGoogle Scholar
  58. 58.
    Stab V., Nitsche S., Niezold T., Storcksdieck Genannt Bonsmann M., Wiechers A., Tippler B., Hannaman D., Ehrhardt C., Uberla K., Grunwald T., Tenbusch M. 2013. Protective efficacy and immunogenicity of a combinatory DNA vaccine against influenza A virus and the respiratory syncytial virus. PLOS ONE. 8, e72217.PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Touihri L., Ahmed S.B., Chtourou Y., Daoud R., Bahloul C. 2012. Design of different strategies of multivalent DNA-based vaccination against rabies and canine distemper in mice and dogs. Virol. J. 9, 319.PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Yan J., Corbitt N., Pankhong P., Shin T., Khan A., Sardesai N.Y., Weiner D.B. 2011. Immunogenicity of a novel engineered HIV-1 clade C synthetic consensusbased envelope DNA vaccine. Vaccine. 29, 7173–7181.PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Obeng-Adjei N., Hutnick N.A., Yan J., Chu J.S., Myles D.J., Morrow M.P., Sardesai N.Y., Weiner D.B. 2013. DNA vaccine cocktail expressing genotype A and C HBV surface and consensus core antigens generates robust cytotoxic and antibody responses in mice and rhesus macaques. Cancer Gene Ther. 20, 652–662.CrossRefPubMedGoogle Scholar
  62. 62.
    Yan J., Villarreal D.O., Racine T., Chu J.S., Walters J.N., Morrow M.P., Khan A.S., Sardesai N.Y., Kim J.J., Kobinger G.P., Weiner D.B. 2014. Protective immunity to H7N9 influenza viruses elicited by synthetic DNA vaccine. Vaccine. 32, 2833–2842.PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Latimer B., Toporovski R., Yan J., Pankhong P., Morrow M.P., Khan A.S., Sardesai N.Y., Welles S.L., Jacobson J.M., Weiner D.B., Kutzler M.A. 2014. Strong HCV NS3/4a, NS4b, NS5a, NS5b-specific cellular immune responses induced in rhesus macaques by a novel HCV genotype 1a/1b consensus DNA vaccine. Hum. Vaccin. Immunother. 10, 2357–2365.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • E. S. Starodubova
    • 1
  • O. V. Preobrazhenskaia
    • 1
  • Y. V. Kuzmenko
    • 1
  • A. A. Latanova
    • 1
  • E. I. Yarygina
    • 2
  • V. L. Karpov
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Skryabin Moscow State Academy of Veterinary Medicine and BiotechnologyMoscowRussia

Personalised recommendations