Molecular Biology

, Volume 49, Issue 3, pp 358–368 | Cite as

Repetitive DNA sequences as an indicator of the level of genetic isolation in fish

  • E. A. Shubina
  • E. V. Ponomareva
  • A. V. Klimov
  • A. V. Klimova
  • O. S. Kedrova
Molecular Phylogenetics


Although the functional role is still unknown for most types of nuclear noncoding repetitive sequences, some of them proved to provide adequate phylogenetic and taxonomic markers for studying the genetic relationships of organisms at the species and within-species levels. Several markers were used in this work. First, microsatellite markers were used to examine populations varying in the extent of genetic subdivision in marine and anadromous fish, including the Chilean jack mackerel Trachurus murphyi, anadromous brown trout Salmo trutta, and isolated and anadromous char populations. Locus polymorphism was proportional to the gene flow between populations in all cases. Second, satellite DNA was used to study the phylogenetic relationships within the genera Salmo, Oncorhynchus, Salvelinus, and Coregonus. Genetic distances agreed well with the taxonomic relationships based on morphological traits and various biochemical markers and correlated with the evolutionary ages estimated for the groups by other markers. Third, RAPD PCR with a set of 20-mer primers was performed to study the genus Coregonus and anadromous and isolated populations and species of the genus Salvelinus. The resulting phylogenetic trees may help to resolve some disputable taxonomic issues for the groups. A comparison showed that several RAPD-detected sequences contain conserved fragments of coding sequences and polymorphic repeats (minisatellites) from intergenic regions or introns. The finding point to a nonrandom nature of repetitive DNA divergence and may reflect the evolution of the fish groups examined. Heterochromatic satellite repeats were assumed to contribute to generating a reproductive barrier.


DNA tandem repeats microsatellite and multilocus analyses fish genetic isolation speciation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mayr E. 1963. Animal Species and Evolution. Cambridge, MA: Harvard Univ. Press.CrossRefGoogle Scholar
  2. 2.
    Dobzhansky T. 1937. Genetics and the Origin of Species. New York: Columbia Univ. Press.Google Scholar
  3. 3.
    Arrighi F.E., Bergendahl J., Mandel M. 1968. Isolation and characterization of DNA from fixed cells and tissues. Exp. Cell Res. 50, 47–53.PubMedCrossRefGoogle Scholar
  4. 4.
    Ponomareva E.V., Kuzishchin K.V., Volkov A.A., Gordeeva N.V., Ponomareva M.V., Shubina E.A. 2014. Structure and genetic diversity of small populations of brown trout Salmo trutta in Kandalaksha Bay, the White Sea. J. Ichthyol. 54, 41–53.CrossRefGoogle Scholar
  5. 5.
    Shubina E.A., Ponomareva E.V., Gritzenko O.F. 2006. Population genetic structure of the char species of the Northern Kuril Islands and the rank of the Dolly Varden in the system of the genus Salvelinus (Salmonidae: Teleostei). Zh. Obshch. Biol. 67, 280–298.PubMedGoogle Scholar
  6. 6.
    Mednikov B.M., Shubina E.A., Mel’nikova M.N., Savvaitova K.A. 1999. The problem of the generic status of Pacific salmon and trout: Genetic taxonomic analysis. J. Ichthyol. 39, 10–17.Google Scholar
  7. 7.
    Shubina E.A., Ponomareva E.V., Gritsenko O.F. 2007. Genetic structure of the Salvelinus genus chars from reservoirs of the Kuril Islands. Biochemisty (Moscow). 72, 1331–1348.CrossRefGoogle Scholar
  8. 8.
    Shubina E.A., Ponomareva E.V., Glubokov A.I. 2009. Population genetic structure of walleye pollock Theragra chalcogramma (Gadidae, Pisces) from the Bering Sea and Sea of Okhotsk. Mol. Biol. (Moscow). 43, 855–866.CrossRefGoogle Scholar
  9. 9.
    Feng F., Lo L.C., Lin Z., Zhu Y., Yue G. H. 2005. Isolation and charactserization of microsatellites in a marine food fish specie, golden trevally Gnathanodon speciosus. Mol. Ecol. Notes. 5, 760–761.CrossRefGoogle Scholar
  10. 10.
    Fedorov A.N., Grechko V.V., Slobodyanyuk S.Ya., Fedorova L.V., Timokhina G.I. 1992. Taxonomic analysis of DNA repeated sequences. Mol. Biol. (Moscow). 26, 464–469.Google Scholar
  11. 11.
    Nei M., Li W.H. 1979. Mathematical model for studying genetic variations in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76, 5269–5273.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Van de Peer Y., De Wachter R. 1994. TREECON for Windows: A software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput. Applic. Biosci. 10, 569–570.Google Scholar
  13. 13.
    Subina E.A., Nikitin M.A., Ponomareva E.V., Gritsenko O.F. 2010. Characterization of molecular markers as evidence of adaptive evolution of Salvelinus alpinus × S. malma complex populations of Kuril Islands. Moscow Univ. Biol. Sci. Bull. 65, 190–192.CrossRefGoogle Scholar
  14. 14.
    Shubina E.A., Nikitin M.A., Ponomareva E.V., Goryunov D.V., Gritsenko O.F. 2013. Comparative study of genome divergence in Salmonids with various rates of genetic isolation. Int. J. Genomics. 2013, ID 629543.Google Scholar
  15. 15.
    Abaunza P., Murta A.G., Campbell N., Cimmaruta R., Comesana A.S., Dahle G., Garcýa Santamarýa M.T., Gordo L.S., Iversen S.A., MacKenzie K., Magoulas A., Mattiucci S., Molloy J., Nascetti G., Pinto A.L., Quinta R., Ramos P., Sanjuan A., Santos A.T., Stransky C., Zimmermann C. 2008. Stock identity of horse mackerel (Trachurus trachurus) in the Northeast Atlantic and Mediterranean Sea: Integrating the results from different stock identification approaches. Fisheries Res. 89, 196–209.CrossRefGoogle Scholar
  16. 16.
    Karaiskou N., Triantafyllidis A., Triantafyllidis C. 2004. Shallow genetic structure of three species of the genus Trachurus in European waters. Mar. Ecol. Prog. Ser. 281, 193–205.CrossRefGoogle Scholar
  17. 17.
    Stepien C.A., Rosenblatt R.H. 1996. Genetic divergence in antitropical pelagic marine fishes (Trachurus, Merluccius, and Scomber) between North and South America. Copeia. 3, 586–598.CrossRefGoogle Scholar
  18. 18.
    Vasil’eva E., Stygar V. 2000. Salvelinus gritzenkoi, a new species of char from the North Kuril Islands (Salmonidae, Salmoniformes). Folia Zool. 49, 317–320.Google Scholar
  19. 19.
    Grechko V.V., Fedorova L.V., Fedorov A.N., Slobodyanyuk S.Ya., Ryabinin D.M., Melnikova M.N., Bannikova A.A., Lomov A.A., Sheremet’eva V.A., Gorshkov V.A., Sevostyanova G.A., Semenova S.K., Riskov A.P., Mednikov B.M., Darevskii I.S. 1997. Restiction endonuclease analysis of highly repeated DNA sequences sheds light on genetic relatedness of lower taxa of animals. Mol. Biol. (Moscow). 31, 202–209.)Google Scholar
  20. 20.
    Roudykh I.A., Grechko V.V., Ciobanu D.G., Kramerov D.A., Darevskii I.S. 2002. Variability of restriction sites in satellite DNA as a molecular basis of taxonoprint method: Evidence from the study of Caucasian rock lizards. Russ. J. Genet. 38, 937–941.CrossRefGoogle Scholar
  21. 21.
    Gray K.M., White J.W., Costanzi C., Gillespie D., Schroeder W.T., Calabretta B., Saunders G.F. 1985. Recent amplification of an alpha satellite DNA in humans. Nucleic Acids Res. 13, 521–535.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Jeffreys A.J., Wilson V., Thein S.L. 1985. Hypervariable’ minisatellite’ regions in human DNA. Nature. 314, 67–73.PubMedCrossRefGoogle Scholar
  23. 23.
    Elder J.F., Turner B.J. 1994. Concerted evolution at the population level: Pupfish HindIII satellite DNA sequences. Proc. Natl. Acad. Sci. U. S. A. 91, 994–998.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Dover G.A. 1982. Molecular drive: A cohesive mode of species evolution. Nature. 299, 111–117.PubMedCrossRefGoogle Scholar
  25. 25.
    Ohta T., Dover G.A. 1984. The cohesive population genetics of molecular drive. Genetics. 108, 501–521.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Elder J.F., Turner B.J. 1995. Concerted evolution of repetitive DNA sequences in eukaryotes. Quart. Rev. Biol. 70, 297–320.PubMedCrossRefGoogle Scholar
  27. 27.
    Mednikov B.M., Bannikova A.A., Lomov A.A., Melnikova M.N., Shubina E.A. 1995. Restriction endonuclease analysis of repeated nuclear DNA. Species criterion and mechanisms of speciation. Mol. Biol. (Moscow). 29, 778–786.Google Scholar
  28. 28.
    Smith G.R., Stearley R.F. 1989. The classification and scientific names of rainbow and cutthroat trouts. Fisheries. 14, 4–10.CrossRefGoogle Scholar
  29. 29.
    Bernatchez L., Dodson J.J. 1990. Allopatric origin of sympatric populations of Lake Whitefish (Coregonus clupeaformis) as revealed by mitochondrial-DNA restriction analysis. Evolution. 4, 1263–1271.CrossRefGoogle Scholar
  30. 30.
    Todd T.N., Smith G.R. 1992. A review of differentiation in great Lakes ciscoes. Pol. Arch. Hydrobiol. 39, 261–267.Google Scholar
  31. 31.
    Savvaitova K.A. 1995. Patterns of diversity and processes of speciation in Arctic Char. Nord J. Freshw Res. 71, 81–91.Google Scholar
  32. 32.
    Chereshnev I.A., Skopets M.B. 1990. Salvethymus svetovidovi gen. et sp. nova, a new endemic fish from subfamily Salmonidae from Lake El’gygytgyn (the Central Chukotka). J. Ichthyol. 30, 201–213.Google Scholar
  33. 33.
    Behnke R.J. 1972. The systematics of salmonid fishes of recently glaciated lakes. J. Fish Res. Board Can. 29, 639–671.CrossRefGoogle Scholar
  34. 34.
    Osinov A.G., Lebedev V.S. 2004. Salmonid fishes (Salmonidae, Salmoniformes): The systematic position in the superorder Protacanthopterygii-the main stages of evolution, and molecular dating. J. Ichthyol. 44, 690–715.Google Scholar
  35. 35.
    Svardson G. 1979. Speciation of Scandinavian Coregonus. Rep. Inst. Freshw. Res. Drottningholm. 57, 1–95.Google Scholar
  36. 36.
    Todd T.N. 1981. Allelic variability in species and stocks of Lake Superior ciscoes (Coregoninae). Can. J. Fish. Aquat. Sci. 38, 1808–1813.CrossRefGoogle Scholar
  37. 37.
    Svärdson G. 1970. Significance of introgression in coregonid evolution. In: Biology of Coregonid Fishes. Eds. Lindsey C.C., Woods C.S. Winnipeg, MB: Univ. of Manitoba Press, pp. 33–59.Google Scholar
  38. 38.
    Ermolenko L.N. 1992. Genetic divergence in the family Coregonidae. Pol. Arch. Hydrobiol. 39, 533–539.Google Scholar
  39. 39.
    Xu S. 2000. Phylogenetic analysis under reticulate evolution. Mol. Biol. Evol. 17, 897–907.PubMedCrossRefGoogle Scholar
  40. 40.
    Svardson G. 1998. Postglacial dispersal and reticulate evolution of Nordic Coregonids. Nord. J. Freshw. Res. 74, 3–32.Google Scholar
  41. 41.
    Politov D.V., Baldina S.N., Gordon N.Yu. 2010. Modes of speciation in Palearctic Coregonids. Proc. 5th Int. Vereschagin Baikal Conference. Irkutsk, pp. 41–42.Google Scholar
  42. 42.
    Welsh J., McClelland M. 1991. Genomic fingerprinting using arbitrarily primed PCR and a matrix of pairwise combinations of primers. Nucleic Acids Res. 19, 5275–5279.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Berst A.H., Emery A.R., Spangler G.R. 1981. Reproductive behavior of hybrid charr (Salvelinus fontinalis × S. namaycush). Can. J. Fish Aquat. Sci. 38, 432–440.CrossRefGoogle Scholar
  44. 44.
    Coyne J.A., Orr H.A. 1998. The evolutionary genetics of speciation. Phil. Trans. R. Soc. London, B. 353, 287–305.CrossRefGoogle Scholar
  45. 45.
    Orr H.A. 2001. The genetics of species differences. Trends Ecol. Evol. 16, 343–350.CrossRefGoogle Scholar
  46. 46.
    Shapiro J.A., von Sternberg R. 2005. Why repetitive DNA is essential to genome function. Biol. Rev. 80, 1–24.CrossRefGoogle Scholar
  47. 47.
    Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. 2002. The Molecular Biology of the Cell, 4th ed. New York: Taylor & Francis.Google Scholar
  48. 48.
    Albanese V., Biguet N.F., Kiefer H., Bayard E., Mallet J., Meloni R. 2001. Quantative effects on gene silencing by allelic variation at a tetranucleotide microsatellite. Hum. Mol. Genet. 10, 1785–1792.PubMedCrossRefGoogle Scholar
  49. 49.
    Lewontin R.C. 1972. The apportionment of human diversity. J. Evol. Biol. 6, 381–398.Google Scholar
  50. 50.
    Grechko V.V. 2011. Repeated DNA sequences as an engine of biological diversification. Mol. Biol. (Moscow). 45, 704–727.CrossRefGoogle Scholar
  51. 51.
    Osinov A.G., Lebedev V.S. 2000. Genetic divergence and phylogeny of the Salmoninae based on allozyme data. J. Fish Biol. 57, 354–381.Google Scholar
  52. 52.
    Crane P.A., Seeb L.W., Seeb J.E. 1994. Genetic relationships among Salvelinus species inferred from allozyme data. Can. J. Fish Aquat Sci. 51(Suppl. 1), 182–197.CrossRefGoogle Scholar
  53. 53.
    Bernatchez L., Colombani F., Dodson J.J. 1991. Phylogenetic relationships among the subfamily Coregoninae as revealed by mitochondrial DNA restriction analysis. J. Fish Biol. 39(Suppl. A), 283–290.CrossRefGoogle Scholar
  54. 54.
    Turgeon J., Bernatchez L. 2003. Reticulate evolution and phenotypic diversity in North American ciscoes, Coregonus ssp. (Teleostei: Salmonidae): Implications for the conservation of an evolutionary legacy. Conserv. Genet. 4, 67–81.CrossRefGoogle Scholar
  55. 55.
    Shedko S.V., Miroshnichenko I.L., Nemkova G.A. 2012. Phylogeny of Salmonids (Salmoniformes, Salmonidae) and its molecular dating: Analysis of nuclear RAG1 gene. Russ. J. Genet. 48, 575–579.CrossRefGoogle Scholar
  56. 56.
    Nei M., Xu P., Glazko G. 2001. Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms. Proc. Natl. Acad. Sci. U. S. A. 98, 2497–2502.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Thorpe J.P. 1982. The molecular clock hypothesis, biochemical evolution, genetic differentiation and systematics. Annu. Rev. Ecol. Evol. Syst. 13, 139–168.CrossRefGoogle Scholar
  58. 58.
    Crespi B.J., Fulton M.J. 2004. Molecular systematic of Salmonidae: Combined nuclear data yields a robust phylogeny. Mol. Phylogenet. Evol. 31, 658–679.PubMedCrossRefGoogle Scholar
  59. 59.
    Ferree P.M., Barbash D.A. 2009. Species-specific heterocromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. PLoS Biol. 7(10), e1000234.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Hughes S.E., Hawley R.S. 2009. Heterochromatin: A rapidly evolving species barrier. PLOS Biol. 7, e1000233. Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • E. A. Shubina
    • 1
    • 2
  • E. V. Ponomareva
    • 2
  • A. V. Klimov
    • 3
  • A. V. Klimova
    • 4
  • O. S. Kedrova
    • 2
  1. 1.Belozersky Institute of Phyico-Chemical BiologyMoscow State UniversityMoscowRussia
  2. 2.Biological FacultyMoscow State UniversityMoscowRussia
  3. 3.Kamchatka Federal Research Institute of Fisheries and OceanographyPetropavlovsk KamchatskiiRussia
  4. 4.Kamchatka State Technical UniversityPetropavlovsk KamchatskiiRussia

Personalised recommendations