Advertisement

Molecular Biology

, Volume 49, Issue 1, pp 58–64 | Cite as

Role of Ku antigen in the repair of apurinic/apyrimidinic sites in DNA

  • A. A. Kosova
  • O. I. Lavrik
  • S. N. Khodyreva
Reviews

Abstract

Apurinic/apyrimidinic (AP) sites are some of the most frequent lesions in genomic DNA. It is widely accepted that, regardless of their origin, AP sites are further processed by base excision repair (BER) machinery, being the central intermediate of this process. Proteins that recognize AP sites are able to form covalent adducts with DNA under special conditions. Using a combination of the crosslinking technique with mass-spectrometry analysis, Ku antigen (Ku) (the central player in nonhomologous end joining (NHEJ), which is the pathway of double-strand break (DSB) repair), was identified as a protein reactive to AP sites. Moreover, Ku was shown to be 5′-dRP/AP lyase, which acts near DSBs in NHEJ. Recent studies have demonstrated the involvement of Ku in the different stages of BER. Here, Ku functions in the NHEJ and BER pathways of DNA repair were overviewed.

Keywords

Ku antigen apurinic/apyrimidinic site nonhomologous end joining base excision repair 

Abbreviations

AP site

apurinic/apyrimidinic site

APE1

apurinic/apyrimidinic endonuclease 1

dRP

deoxyribosophosphate

Polβ

DNA polymerase β

BER

base excision repair

NHEJ

nonhomologous end joining

DNA-PK

DNA-dependent protein kinase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lindahl T. 1993. Instability and decay of the primary structure of DNA. Nature. 362, 709–715.CrossRefPubMedGoogle Scholar
  2. 2.
    Wilson D.M. III, Thompson L.H. 1997. Life without DNA repair. Proc. Natl. Acad. Sci. U. S. A. 94, 12754–12757.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    McCullough A.K., Dodson M.L., Lloyd R.S. 1999. Initiation of base excision repair: Glycosylase mechanisms and structures. Annu. Rev. Biochem. 68, 255–285.CrossRefPubMedGoogle Scholar
  4. 4.
    Atamna H., Cheung I., Ames B.N. 2000. A method for detecting abasic sites in living cells: Age-dependent changes in base excision repair. Proc. Natl. Acad. Sci. U. S. A. 97, 686–691.CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Sokhansanj B.A., Wilson D.M. III. 2004. Oxidative DNA damage background estimated by a system model of base excision repair. Free Radic. Biol. Med. 37, 422–427.CrossRefPubMedGoogle Scholar
  6. 6.
    Asaeda A., Ide H., Tano K., Takamori Y., Kubo K. 1998. Repair kinetics of abasic sites in mammalian cells selectively monitored by the aldehyde reactive probe (ARP). Nucleosides Nucleotides. 17, 503–513.CrossRefPubMedGoogle Scholar
  7. 7.
    Krokan H.E., Nilsen H., Skorpen F., Otterlei M., Slupphaug G. 2000. Base excision repair of DNA in mammalian cells. FEBS Lett. 476, 73–77.CrossRefPubMedGoogle Scholar
  8. 8.
    Georgakilas A.G., O’Neill P., Stewart R.D. 2013. Induction and repair of clustered DNA lesions: What do we know so far? Radiat. Res. 180, 100–109.CrossRefPubMedGoogle Scholar
  9. 9.
    Ward J.F. 1988. DNA damage produced by ionizing radiation in mammalian cells: Identities, mechanisms of formation, and reparability. Prog. Nucl. Acid Res. Mol. Biol. 35, 95–125.CrossRefGoogle Scholar
  10. 10.
    Datta K., Neumann R.D., Winters T.A. 2005. Characterization of complex apurinic/apyrimidinic-site clustering associated with an authentic site-specific radiation-induced DNA double-strand break. Proc. Natl. Acad. Sci. U. S. A. 102, 10569–10574.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Levina E.S., Bavykin S.G., Shik V.V., Mirzabekov A.D. 1980. Interaction of histones with DNA in chromatin. A new method of covalent binding of histones to DNA available for their localization on DNA. Biochemistry (Moscow). 45, 1133–1145.Google Scholar
  12. 12.
    Khodyreva S.N., Lavrik O.I. 2011. Affinity modification in a proteomic study of DNA repair ensembles. Russ. J. Bioorg. Chem. 37, 80–94.CrossRefGoogle Scholar
  13. 13.
    Ilina E.S., Lavrik O.I., Khodyreva S.N. 2008. Ku antigen interacts with abasic sites. Biochim. Biophys. Acta. 1784, 1777–1785.CrossRefPubMedGoogle Scholar
  14. 14.
    Gullo C., Au M., Feng G., Teoh G. 2006. The biology of Ku and its potential oncogenic role in cancer. Biochim. Biophys. Acta. 1765, 223–234.PubMedGoogle Scholar
  15. 15.
    Walker J.R., Corpina R.A., Goldberg J. 2001. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature. 412, 607–614.CrossRefPubMedGoogle Scholar
  16. 16.
    Downs J.A., Jackson S.P. 2004. A means to a DNA end: the many roles of Ku. Nat. Rev. Mol. Cell Biol. 5, 367–378.CrossRefPubMedGoogle Scholar
  17. 17.
    Piersen C.E., McCullough A.K., Lloyd R.S. 2000. AP lyases and dRPases: Commonality of mechanism. Mutat. Res. 459, 43–53.CrossRefPubMedGoogle Scholar
  18. 18.
    Hegde V., Wang M., Deutsch W.A. 2004. Human ribosomal protein S3 interacts with DNA base excision repair proteins hAPE/Ref-1 and hOGG1. Biochemistry. 43, 14211–14217.CrossRefPubMedGoogle Scholar
  19. 19.
    Postel E.H., Abramczyk B.M., Levit M.N., Kyin S. 2000. Catalysis of DNA cleavage and nucleoside triphosphate synthesis by NM23-H2/NDP kinase share an active site that implies a DNA repair function. Proc. Natl. Acad. Sci. U. S. A. 97, 14194–14199.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Sczepanski J.T., Wong R.S., McKnight J.N., Bowman G.D., Greenberg M.M. 2010. Rapid DNA-protein cross-linking and strand scission by an abasic site in a nucleosome core particle. Proc. Natl. Acad. Sci. U. S. A. 107, 22475–22480.CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Müller T.A., Meek K., Hausinger R.P. 2010. Human AlkB homologue 1 (ABH1) exhibits DNA lyase activity at abasic sites. DNA Repair (Amsterdam). 9, 58–65.CrossRefGoogle Scholar
  22. 22.
    Zharkov D.O., Grollman A.P. 1998. MutY DNA glycosylase: Base release and intermediate complex formation. Biochemistry. 37, 12384–12394.CrossRefPubMedGoogle Scholar
  23. 23.
    Nazarkina Z.K., Khodyreva S.N., Marsin S., Lavrik O.I., Radicella J.P. 2007. XRCC1 interactions with base excision repair DNA intermediates. DNA Repair (Amsterdam). 6, 254–264.CrossRefGoogle Scholar
  24. 24.
    Roberts S.A., Strande N., Burkhalter M.D., Strom C., Havener J.M., Hasty P., Ramsden D.A. 2010. Ku is a 5′-dRP/AP lyase that excises nucleotide damage near broken ends. Nature. 464, 1214–1217.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Strande N., Roberts S.A., Oh S., Hendrickson E.A., Ramsden D.A. 2012. Specificity of the dRP/AP lyase of Ku promotes nonhomologous end joining (NHEJ) fidelity at damaged ends. J. Biol. Chem. 287, 13686–13693.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Kosova A.A., Khodyreva S.N., Lavrik O.I. 2014. Ku80 interaction with apurinic/apyrimidinic sites depends on the structure of DNA ends. Biopolym. Cell. 30, 42–46.CrossRefGoogle Scholar
  27. 27.
    Koike M., Yutoku Y., Koike A. 2011. KARP-1 works as a heterodimer with Ku70, but the function of KARP-1 cannot perfectly replace that of Ku80 in DSB repair. Exp. Cell Res. 317, 2267–2275.CrossRefPubMedGoogle Scholar
  28. 28.
    Wang J., Dong X., Myung K., Hendrickson E.A., Reeves W.H. 1998. Identification of two domains of the p70 Ku protein mediating dimerization with p80 and DNA binding. J. Biol. Chem. 273, 842–848.CrossRefPubMedGoogle Scholar
  29. 29.
    Li H., Choi Y.J., Hanes M.A., Marple T., Vogel H., Hasty P. 2009. Deleting Ku70 is milder than deleting Ku80 in p53-mutant mice and cells. Oncogene. 28, 1875–1878.CrossRefPubMedGoogle Scholar
  30. 30.
    Li H., Marple T., Hasty P. 2013. Ku80-deleted cells are defective at base excision repair. Mutat. Res. 745–746, 16–25.CrossRefPubMedGoogle Scholar
  31. 31.
    Choi Y.J., Li H., Son M.Y., Wang X.H., Fornsaglio J.L., Sobol R.W., Lee M., Vijg J., Imholz S., Dollé M.E., van Steeg H., Reiling E., Hasty P. 2014. Deletion of individual Ku subunits in mice causes an NHEJ-independent phenotype potentially by altering apurinic/apyrimidinic site repair. PLoS ONE. 9, e86358.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Ju Y.J., Lee K.H., Park J.E., Yi Y.S., Yun M.Y., Ham Y.H., Kim T.J., Choi H.M., Han G.J., Lee J.H., Lee J., Han J.S., Lee K.M., Park G.H. 2006. Decreased expression of DNA repair proteins Ku70 and Mre11 is associated with aging and may contribute to the cellular senescence. Exp. Mol. Med. 38, 686–693.CrossRefPubMedGoogle Scholar
  33. 33.
    Yoo S., Kimzey A., Dynan W.S. 1999. Photocross-linking of an oriented DNA repair complex. Ku bound at a single DNA end. J. Biol. Chem. 274, 20034–20039.CrossRefPubMedGoogle Scholar
  34. 34.
    Rivera-Calzada A., Spagnolo L., Pearl L.H., Llorca O. 2007. Structural model of full-length human Ku70-Ku80 heterodimer and its recognition of DNA and DNA-PKcs. EMBO Rep. 8, 56–62.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • A. A. Kosova
    • 1
  • O. I. Lavrik
    • 1
    • 2
  • S. N. Khodyreva
    • 1
    • 2
  1. 1.Institute of Chemical Biology and Fundamental MedicineSiberian Division of Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations