Molecular Biology

, Volume 48, Issue 4, pp 468–484 | Cite as

Ribosome: Lessons of a molecular factory construction

  • O. V. Sergeeva
  • P. V. Sergiev
  • A. A. Bogdanov
  • O. A. Dontsova
Reviews

Abstract

The ribosome is a macromolecular complex responsible for protein biosynthesis. Two subunits of the bacterial ribosome contain three RNA molecules of more than 4000 nt in total and more than 50 proteins. Ribosome assembly is an intricate multistep process, which is vital for the cell. The review summarizes the current concepts of the mechanisms sustaining bacterial ribosome assembly in the cell and in vitro model systems. Some details of assembling this machine are still unknown.

Keywords

Escherichia coli ribosome translation RNA helicase GTPase RNA methyltransferase ribonucleoprotein complex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yusupov M. 2001. Crystal structure of the ribosome at 5.5 angstrom resolution. Science. 292, 883–896.PubMedCrossRefGoogle Scholar
  2. 2.
    Wimberly B. 2000. Structure of the 30S ribosomal subunit. Nature. 407, 327–339.PubMedCrossRefGoogle Scholar
  3. 3.
    Cerretti D. 1983. The spc ribosomal protein operon of Escherichia coli: Sequence and cotranscription of the ribosomal protein genes and a protein export gene. Nucleic Acids Res. 11, 2599–2616.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Paul B. 2004. rRNA transcription in Escherichia coli. Annu. Rev. Genet. 38, 749–770.PubMedCrossRefGoogle Scholar
  5. 5.
    Cannone J. 2002. The comparative RNA web (CRW) site: An online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinform. 3, 2.CrossRefGoogle Scholar
  6. 6.
    Wimberly B. 2000. Structure of the 30S ribosomal sub-unit. Nature. 407(6802), 327–339.PubMedCrossRefGoogle Scholar
  7. 7.
    Sykes M. 2009. Complex assembly landscape for the 30S ribosomal subunit. Annu. Rev. Biophys. 38, 197–215.PubMedCrossRefGoogle Scholar
  8. 8.
    Williamson J. 2003. After the ribosome structure: How are the subunits assembled? RNA. 9, 165–167.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Liiv A. 2004. Importance of transient structures during post-transcriptional refolding of the pre-23S rRNA and ribosomal large subunit assembly. J. Mol. Biol. 342, 725–741.PubMedCrossRefGoogle Scholar
  10. 10.
    Young R. 1978. Complementary sequences 1700 nucleotides apart from a ribonuclease III cleavage site in Escherichia coli ribosomal precursor RNA. Proc. Natl. Acad. Sci. U. S. A. 75, 3593–3597.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Ghora B. 1979. Identification of a novel RNA molecule in a new RNA processing mutant of Escherichia coli which contains 5S ribosomal RNA sequences. J. Biol. Chem. 254, 1951–1956.PubMedGoogle Scholar
  12. 12.
    Li Z. 1995. The tRNA processing enzyme RNase T is essential for maturation of 5S RNA. Proc. Natl. Acad. Sci. U. S. A. 92, 6883–6886.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Shajani Z. 2011. Assembly of bacterial ribosomes. Annu. Rev. Biochem. 80, 501–526.PubMedCrossRefGoogle Scholar
  14. 14.
    Held W. 1973. Reconstitution of Escherichia coli 30S ribosomal subunits from purified molecular components. J. Biol. Chem. 248, 5720–5730.PubMedGoogle Scholar
  15. 15.
    Jagannathan I. 2003. Assembly of the central domain of the 30S ribosomal subunit: roles for the primary binding ribosomal proteins S15 and S8. J. Mol. Biol. 330, 373–383.PubMedCrossRefGoogle Scholar
  16. 16.
    Jagannathan I. 2004. Ribosomal protein dependent orientation of the 16S rRNA environment of S15. J. Mol. Biol. 335, 1173–1185.PubMedCrossRefGoogle Scholar
  17. 17.
    Nierhaus K. 1980. The assembly of the prokaryotic ribosome. BioSystems. 12, 273–282.PubMedCrossRefGoogle Scholar
  18. 18.
    Mulder A. 2010. Visualizing ribosome biogenesis: parallel assembly pathways for 30S subunit. Science. 330(6004), 673–677.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Chen S. 2012. Characterization of the ribosome biogenesis landscape in E. coli using quantitative mass spectrometry. J. Mol. Biol. 425(4), 767–779.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Held W. 1973. Rate determining step in the reconstitution of E. coli 30S ribosomal subunits. Biochemistry. 12, 3273–3281.PubMedCrossRefGoogle Scholar
  21. 21.
    Bunner A. 2010. The effect of ribosome assembly cofactors on in vitro 30S subunit reconstitution. J. Mol. Biol. 398, 1–7.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Talkington M. 2005. An assembly landscape for the 30S ribosomal subunit. Nature. 438, 628–632.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Nierhaus K. 1974. Total reconstitution of functionally active 50S ribosomal-subunits from Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 71, 4713–4717.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Sieber G. 1978. Kinetic and thermodynamic parameters of assembly in vitro of large subunit from Escherichia coli ribosomes. Biochemistry. 17, 3505–3511.PubMedCrossRefGoogle Scholar
  25. 25.
    Hayes F. 1971. Biosynthesis of ribosomes in E. coli: 1. Properties of ribosomal precursor particles and their RNA components. Biochimie. 53, 369–382.PubMedCrossRefGoogle Scholar
  26. 26.
    Lindahl L. 1973. Two new ribosomal precursor particles in E. coli. Nature New Biol. 243, 170–172.PubMedCrossRefGoogle Scholar
  27. 27.
    Lindahl L. 1975. Intermediates and time kinetics of in vivo assembly of Escherichia coli ribosomes. J. Mol. Biol. 92, 15–37.PubMedCrossRefGoogle Scholar
  28. 28.
    Tanner N. 2003. The Q motif: A newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis. Mol. Cell. 11, 127–138.PubMedCrossRefGoogle Scholar
  29. 29.
    Elles L. 2009. A dominant negative mutant of the E. coli RNA helicase DbpA blocks assembly of the 50S ribosomal subunit. Nucleic Acids Res. 37, 6503–6514.Google Scholar
  30. 30.
    Charollais J. 2003. The DEAD-box RNA helicase SrmB is involved in the assembly of 50S ribosomal subunits in Escherichia coli. Mol. Microbiol. 48, 1253–1265.PubMedCrossRefGoogle Scholar
  31. 31.
    Charollais J. 2004. CsdA, a cold-shock RNA helicase from Escherichia coli, is involved in the biogenesis of 50S ribosomal subunit. Nucleic Acids Res. 32, 2751–2759.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Jagessar K. 2010. Functional and molecular analysis of Escherichia coli strains lacking multiple DEAD-box helicases. RNA. 16, 1386–1392.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Jain C. 2008. The E. coli RhIE RNA helicase regulates the function of related RNA helicases during ribosome assembly. RNA. 14, 381–389.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Al Refaii A. 2009. Ribosome biogenesis is temperature-dependent and delayed in Escherichia coli lacking the chaperones DnaK or DnaJ. Mol. Microbiol. 71, 748–762.PubMedCrossRefGoogle Scholar
  35. 35.
    El Hage A. 2001. The chaperonin GroEL and other heat-shock proteins, besides DnaK, participate in ribosome biogenesis in Escherichia coli. Mol. Gen. Genet. 264, 796–808.PubMedCrossRefGoogle Scholar
  36. 36.
    Alix J. 1993. Mutant DnaK chaperones cause ribosome assembly defects in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 90, 9725–9729.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Olins P.O. 1981. Translational regulation by ribosomal protein S8 in Escherichia coli: Structural homology between rRNA binding site and feedback target on mRNA. Nucleic Acids Res. 9, 1757–1764.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Britton R. 2009. Role of GTPases in bacterial ribosome assembly. Annu. Rev. Microbiol. 63, 155–176.PubMedCrossRefGoogle Scholar
  39. 39.
    Himeno H. 2004. A novel GTPase activated by the small subunit of ribosome. Nucleic Acids Res. 32, 5303–5309.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Hwang J. 2010. A bacterial GAP-like protein, YihI, regulating the GTPase of Der, an essential GTP-binding protein in Escherichia coli. J. Mol. Biol. 399, 759–772.PubMedCrossRefGoogle Scholar
  41. 41.
    Hwang J. 2001. An essential GTPase, Der, containing double GTP-binding domains from Escherichia coli and Thermotoga maritima. J. Biol. Chem. 276, 31415–31421.PubMedCrossRefGoogle Scholar
  42. 42.
    Hwang J. 2006. The tandem GTPase, Der, is essential for the biogenesis of 50S ribosomal subunits in Escherichia coli. Mol. Microbiol. 61, 1660–1672.PubMedCrossRefGoogle Scholar
  43. 43.
    Jiang M. 2006. The Escherichia coli GTPase CgtAE is involved in late steps of large ribosome assembly. J. Bacteriol. 188, 6757–6770.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Woodson S. 2008. RNA folding and ribosome assembly. Curr. Opin. Chem. Biol. 12(6), 667–673.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Chow C. 2007. Expanding the nucleotide repertoire of the ribosome with posttranscriptional modifications. ACS Chem. Biol. 2(9), 610–619.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Hou Y. 2010. Stereochemical mechanisms of tRNA methyltransferases. FEBS Lett. 584, 278–286.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Colson C. 1979. Genetics of ribosomal protein methylation in Escherichia coli: 3. Map position of two genes, prmA and prmB, governing methylation of proteins L11 and L3. Mol. Gen. Genet. 169, 245–250.PubMedCrossRefGoogle Scholar
  48. 48.
    Cashel M. 1996. Regulation of ribosome synthesis. In: Escherichia coli and Salmonella: Cellular and Molecular Bology, 2nd ed. Ed. Neidhardt F.C. Washington, DC: ASM Press.Google Scholar
  49. 49.
    David C. 1999. Isoaspartate in ribosomal protein S11 of Escherichia coli. J. Bacteriol. 181, 2871–2877.Google Scholar
  50. 50.
    Arnold R. 1999. Observation of Escherichia coli ribosomal proteins and their posttranslational modifications by mass spectrometry. Anal. Biochem. 269, 105–112.PubMedCrossRefGoogle Scholar
  51. 51.
    Kowalak J. 1996. Methylthio-aspartic acid: identification of a novel posttranslational modification in ribosomal protein S12 from Escherichia coli. Protein Sci. 5, 1625–1632.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Brosius J. 1976. The primary structure of protein L16 located at the peptidyltransferase center of Escherichia coli ribosomes. FEBS Lett. 68, 105–109.PubMedCrossRefGoogle Scholar
  53. 53.
    Holmes K. 2004. Mapping structural differences between 30S ribosomal subunit assembly intermediates. Nature Struct. Mol. Biol. 11, 179–186.CrossRefGoogle Scholar
  54. 54.
    Nesterchuk M. 2011. Posttranslational modifications of ribosomal proteins in Escherichia coli. Acta Naturae. 3(2), 22–33.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Isono S. 1981. Ribosomal protein modification in Escherichia coli: 3. Studies of mutants lacking an acetylase activity specific for protein L12. Mol. Gen. Genet. 183(3), 473–477.PubMedCrossRefGoogle Scholar
  56. 56.
    Connolly K. 2008. Mechanistic insight into the ribosome biogenesis functions of the ancient protein KsgA. Mol. Microbiol. 70(5), 1062–1075.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • O. V. Sergeeva
    • 1
    • 3
  • P. V. Sergiev
    • 1
    • 2
  • A. A. Bogdanov
    • 1
    • 2
  • O. A. Dontsova
    • 1
    • 2
  1. 1.Chemistry DepartmentMoscow State UniversityMoscowRussia
  2. 2.Belozersky Institute of Physico-Chemical BiologyMoscow State UniversityMoscowRussia
  3. 3.Skolkovo Institute of Science and TechnologySkolkovo, Moscow RegionRussia

Personalised recommendations