Advertisement

Molecular Biology

, Volume 48, Issue 3, pp 390–398 | Cite as

Involvement of serine/threonine protein kinases in the cold stress response in the cyanobacterium Synechocystis sp. PCC 6803: Functional characterization of SpkE protein kinase

  • A. A. Zorina
  • V. S. Bedbenov
  • G. V. Novikova
  • V. B. Panichkin
  • D. A. Los’
Cell Molecular Biology

Abstract

Stress responses of the unicellular cyanobacterium Synechocystis involve several regulatory systems, including two-component ones, and negative supercoiling of genomic DNA. The role of serine/threonine protein kinases (STPKs) in the cold response was studied in Synechocystis. A screening of a collection of STPK mutants identified four enzymes—SpkB, SpkD, SpkE, and SpkG—as possible transcriptional regulators at lower temperatures. A proteome analysis in a SpkE Synechocystis mutant implicated SpkE in the formation of the protein pattern. In vitro phosphorylation assays of recombinant SpkE confirmed that the STPK was functionally active and utilized basic proteins as preferable substrates.

Keywords

Synechocystis proteome serine/threonine protein kinases phosphorylation cold stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Los D.A., Zorina A., Sinetova V., Kryazhov S., Mironov K., Zinchenko V.V. 2010. Stress sensors and signal transducers in cyanobacteria. Sensors. 10, 2386–2415.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Zorina A.A. 2013. Eukaryotic protein kinases in Cyanobacteria. Russ. J. Plant Physiol. 60(5), 589–596.CrossRefGoogle Scholar
  3. 3.
    Suzuki I., Los D.A., Kanesaki Y., Mikami K., Murata N. 2000. The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J. 19, 1327–1334.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Novikova G.V., Moshkov I.E., Los D.A. 2007. Protein sensors and transducers of cold and osmotic stress in cyanobacteria and plants. Mol. Biol. (Moscow). 41, 427–437.CrossRefGoogle Scholar
  5. 5.
    Murata N., Los D.A. 2006. Histidine kinase Hik33 is an important participant in cold signal transduction in cyanobacteria. Physiol. Plant. 126, 17–27.CrossRefGoogle Scholar
  6. 6.
    Los D.A., Mironov K.S., Allakhverdiev S.I. 2013. Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth. Res. 116, 489–509.PubMedCrossRefGoogle Scholar
  7. 7.
    Kappell A.D., van Waasbergen L.G. 2007. The response regulator RpaB binds the high light regulatory 1 sequence upstream of the high-light-inducible hliB gene from the cyanobacterium Synechocystis PCC 6803. Arch. Microbiol. 187, 337–342.PubMedCrossRefGoogle Scholar
  8. 8.
    Suzuki I., Kanesaki Y., Mikami K., Kanehisa M., Murata N. 2001. Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis. Mol. Microbiol. 40, 235–244.PubMedCrossRefGoogle Scholar
  9. 9.
    Los D.A., Suzuki I., Zinchenko V.V., Murata N. 2008. Stress responses in Synechocystis: Regulated genes and regulatory systems. In: The Cyanobacteria: Molecular Biology, Genomics and Evolution. Eds. Herrero A., Flores E. Norfolk, UK: Caister Acad. Press, pp. 117–157.Google Scholar
  10. 10.
    Prakash J.S.S., Sinetova M., Kupriyanova E., Zorina A., Suzuki I., Murata N., Los D.A. 2009. DNA supercoiling regulates the stress-inducible expression of genes in the cyanobacterium. Mol. BioSys. 5, 1904–1912.CrossRefGoogle Scholar
  11. 11.
    Sakayori T., Shiraiwa Y., Suzuki I. 2009. A Synechocystis homolog of SipA protein, Ssl3451, enhances the activity of the histidine kinase Hik33. Plant Cell Physiol. 50, 1439–1448.PubMedCrossRefGoogle Scholar
  12. 12.
    Kamei A., Yuasa T., Orikawa K., Geng X., Ikeuchi M. 2001. A eukaryotic-type protein kinase, SpkA, is required for normal motility of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 183, 1505–1510.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Kamei A., Yuasa T., Geng X., Ikeuchi M. 2002. Biochemical examination of the potential eukaryotic-type protein kinase genes in the complete genome of the unicellular cyanobacterium Synechocystis sp. PCC 6803. DNA Res. 9, 71–78.PubMedCrossRefGoogle Scholar
  14. 14.
    Kamei A., Yoshihara S., Yuasa T., Geng X., Ikeuchi M. 2003. Biochemical and functional characterization of a eukaryotic type protein kinase, SpkB, in the cyanobacterium, Synechocystis sp. PCC 6803. Curr. Microbiol. 46, 296–301.PubMedCrossRefGoogle Scholar
  15. 15.
    Laurent S., Jang J., Janicki A., Zhang C.C., Budu S. 2008. Inactivaton of spkD, encoding a Ser/Thr kinase, affects the pool of the TCA cycle metabolites in Synechocystis sp. strain PCC 6803. Microbiol. SGM. 154, 2161–2167.CrossRefGoogle Scholar
  16. 16.
    Liang C., Zhang X., Chi X., Guan X., Li Y., Qin S., Shao H.B. 2011. Serine/threonine protein kinase SpkG is a candidate for high salt resistance in the unicellular cyanobacterium Synechocystis sp. PCC 6803. PLoS ONE. 6(5): e18718. doi 10.1371/journal.pone.0018718PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Mata-Cabana A., Garcia-Dominguez M., Florencio F.J., Lindahl M. 2012. Thiol-based redox modulation of a cyanobacterial eukaryotic-type serine/threonine kinase required for oxidative stress tolerance. Antiox. Redox Signal. 17, 521–533.CrossRefGoogle Scholar
  18. 18.
    Panichkin V.B., Arakawa-Kobayashi S., Kanaseki T., Suzuki I., Los D.A., Shestakov S.V., Murata N. 2006. Serine/threonine protein kinase SpkA in Synechocystis sp. strain PCC 6803 is a regulator of expression of three putative pilA operons, formation of thick pili, and cell motility. J. Bacteriol. 188, 7696–7699.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Wegener K.M., Welsh E.A., Thornton L.E., Keren N., Jacobs J.M., Hixson K.K., Monroe M.E., Camp D.G., Smith R.D., Pakrasi H.B. 2008. High sensitivity proteomics assisted discovery of a novel operon involved in the assembly of photosystem II, a membrane protein complex. J. Biol. Chem. 283, 27829–27837.PubMedCrossRefGoogle Scholar
  20. 20.
    Zorina A., Stepanchenko N., Novikova G.V., Sinetova M., Panichkin V.B., Moshkov I.E., Zinchenko V.V., Shestakov S.V., Suzuki I., Murata N., Los D.A. 2011. Eukaryotic-like Ser/Thr protein kinases SpkC/F/K are involved in phosphorylation of GroES in the cyanobacterium Synechocystis. DNA Res. 18, 137–151.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Galkin A.N., Mikheeva L.E., Shestakov S.V. 2003. The insertional inactivation of genes encoding eukaryotic-type serine/threonine protein kinases in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology (Moscow). 72(1), 52–57.CrossRefGoogle Scholar
  22. 22.
    Grigorieva G.A., Shestakov S.V. 1982. Transformation in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol. Lett. 13, 367–370.CrossRefGoogle Scholar
  23. 23.
    Sambrook J., Frisch E.F., Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.Google Scholar
  24. 24.
    Rippka R., Deruelles J., Waterbury J., Herdman M., Stanier R. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Gen. Microbiol. 111, 1–61.CrossRefGoogle Scholar
  25. 25.
    Kiseleva L.L., Serebriiskaya T.S., Horvath I., Vigh L., Lyukevich A.A., Los D.A. 2000. Expression of the gene for the Δ9 acyl-lipid desaturase in the thermophilic cyanobacterium. J. Mol. Microbiol. Biotechnol. 2, 331–338.PubMedGoogle Scholar
  26. 26.
    Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685.PubMedCrossRefGoogle Scholar
  27. 27.
    Vigh L., Los D.A., Horvath I., Murata N. 1993. The primary signal in the biological perception of temperature: Pd-catalyzed hydrogenation of membrane lipids stimulates the expression of the desA gene in Synechocystis PCC 6803. Proc. Natl. Acad. Sci. U. S. A. 90, 9090–9094.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Los D.A., Ray M.K., Murata N. 1997. Differences in the control of the temperature-dependent expression of four genes for desaturases in Synechocystis sp. PCC 6803. Mol. Microbiol. 25, 1167–1175.PubMedCrossRefGoogle Scholar
  29. 29.
    Simon W.J., Hall J.J., Suzuki I., Murata N., Slabas A.R. 2002. Proteomic study of the soluble proteins from the unicellular cyanobacterium Synechocystis sp. PCC 6803 using automated matrix-assisted laser desorption/ionization-time of flight peptide mass fingerprinting. Proteomics. 2, 1735–1742.PubMedCrossRefGoogle Scholar
  30. 30.
    Gao Y., Xiong W., Li X.-B., Gao C.-F., Zhang Y.-L., Li H., Wu Q.-Y. 2009. Identification of the proteomic changes in Synechocystis sp. PCC 6803 following prolonged UV-B irradiation. J. Exp. Bot. 60, 1141–1154.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • A. A. Zorina
    • 1
  • V. S. Bedbenov
    • 1
  • G. V. Novikova
    • 1
  • V. B. Panichkin
    • 1
  • D. A. Los’
    • 1
  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations