Molecular Biology

, Volume 47, Issue 3, pp 358–363 | Cite as

Polymorphism of the KPI-A gene sequence in the potato subgenera Potatoe (Sect. Petota, Esolonifera, and Lycopersicum) and Solanum

  • A. A. Krinitsina
  • N. V. Melnikova
  • M. S. Belenikin
  • P. Poltronieri
  • A. Santino
  • A. V. Kudryavtseva
  • A. M. Savilova
  • A. S. Speranskaya
Genomics. Transcriptomics


Group A Kunitz-type protease inhibitors (KPI-A) are involved in protecting potato plants from microorganisms and pests. While the nucleotide sequence is known for many KPI-A genes of various potato cultivars (Solanum tuberosum subsp. tuberosum) and a few genes of tomato (Solanum lycopersicum), there are no data on their allelic diversity in other species of the genus Solanum. KPI-A fragments were cloned, amplified, sequenced, and analyzed from plants of the subgenera Potatoe sect. Petota (five genes from S. tuberosum ssp. andigenum and two genes from S. stoloniferum) and Solanum (five genes from S. nugrum), and their consensus sequences were established. An identity of 97–100% was observed among these sequences and the KPI-A sequences of the sections Petota (cultivated potato Solanum tuberosum ssp. tuberosum) and Etuberosum (S. palustre) The interspecific variation of KPI-A did not exceed its intraspecific variation for all but one species (S. lycopersicum). The distribution of highly variable and conserved sequences in the mature protein-coding region was the same in all of the above species. The same primers failed to amplify the homologous genes from Solanum dulcamara, S. lycopersicum, and Mandragora officinarum. Phylogenetic analysis of the KPI-A sequences showed that S. lycopersicum clustered separately from all of the other species examined, that S. nigrum clustered together with species of the sections Etuberosum and Petota, and that these species produced no species-specific clusters. Although S. nigrum is resistant to all known races of the oomycete Phytophthora infestans, which causes one of the most economically important diseases of Solanaceae, the amino acid sequences encoded by S. nigrum KPI-A differed slightly, if at all, from their counterparts of cultivated potato, which is susceptible to P. infestans infection.


Kunitz-type protease inhibitors section Petota Solanum nigrum Solanaceae KPI-A gene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ishikawa A., Ohta S., Matsuoka K., Hattori T., Nakamura K. 1994. A family of potato genes that encode Kunitz-type proteinase inhibitors: structural comparisons and differential expression. Plant Cell Physiol. 35, 303–312.PubMedGoogle Scholar
  2. 2.
    Heibges A., Glaczinski H., Ballvora A., Salamini F., Gebhardt C. 2003. Structural diversity and organization of three gene families for Kunitz-type enzyme inhibitors from potato tubers (Solanum tuberosum L.). Mol. Genet. Genomics. 269, 526–534.PubMedCrossRefGoogle Scholar
  3. 3.
    Bauw G., Nielsen H.V., Emmersen J., Nielsen K.L., Jorgensen M., Welinder K.G. 2006. Patatins, Kunitz protease inhibitors and other major proteins in tuber of potato cv. Kuras. FEBS J. 273, 3569–3584.CrossRefGoogle Scholar
  4. 4.
    Gruden K., Strukelj B., Ravnikar M., Poljsak-Prijatelj M., Mavrie I., Brzin J., Pundecar J., Kregar I. 1997. Potato cysteine proteinase inhibitor gene family: molecular cloning, characterisation and immunocytochemical localisation studies. Plant Mol. Biol. 34, 317–323.PubMedCrossRefGoogle Scholar
  5. 5.
    Stiekema W.J., Heidekamp F., Dirkse W.G., Van Beckum J., Haan P., ten Bosch C., Louwerse J.D. 1988. Molecular cloning and analysis of four potato tuber mRNAs. Plant Mol. Biol. 11, 255–269.CrossRefGoogle Scholar
  6. 6.
    Strukelj B., Pungercar J., Ritonja A., Krizaj I., Gubensek F., Kregar I., Turk V. 1990. Nucleotide and deduced amino acid sequence of an aspartic proteinase inhibitor homologue from potato tubers (Solanum tuberosum L.). Nucleic Acids Res. 18, 4605.PubMedCrossRefGoogle Scholar
  7. 7.
    Hannapel D.J. 1993. Nucleotide and deduced amino acid sequence of the 22-kilodalton cathepsin D inhibitor protein of potato (Solanum tuberosum L.). Plant Physiol. 101. 703-704.Google Scholar
  8. 8.
    Herbers K., Prat S., Willmitzer L. 1994. Cloning and characterization of a cathepsin D inhibitor gene from Solanum tuberosum L. Plant Mol. Biol. 26, 73–83.PubMedCrossRefGoogle Scholar
  9. 9.
    Odeny D.A., Stich B., Gebhardt C. 2010. Physical organization of mixed protease inhibitor gene clusters, coordinated expression and association with resistance to late blight at the StKI locus on potato chromosome III. Plant Cell Environ. 33, 2149–2161.PubMedCrossRefGoogle Scholar
  10. 10.
    The Potato Genome Sequencing Consortium. 2011. Genome sequence and analysis of the tuber crop potato. Nature. 475, 189–195.CrossRefGoogle Scholar
  11. 11.
    Mares M., Meloun B., Pavlik M., Kostka V., Baudys M. 1989. Primary structure of cathepsin D inhibitor from potatoes and its structure relationship to soybean trypsin inhibitor family. FEBS Lett. 251, 94–98.PubMedCrossRefGoogle Scholar
  12. 12.
    Heibges A., Salamini F., Gebhardt C. 2003. Functional comparison of homologous members of three groups of Kunitz-type enzyme inhibitors from potato tubers (Solanum tuberosum L.). Mol. Genet. Genomics. 269, 535–541.PubMedCrossRefGoogle Scholar
  13. 13.
    Lison P., Rodrigo I., Conejero V. 2006. A novel function for the cathepsin D inhibitor in tomato. Plant Physiol. 142, 1329–1339.PubMedCrossRefGoogle Scholar
  14. 14.
    Ritonja A., Krizaj I., Mesko P., Kopitar M., Lucovnik P., Strukelj B., Pungercar J., Buttle D.J., Barrett A.J., Turk V. 1990. The amino acid sequence of a novel inhibitor of cathepsin D from potato. FEBS Lett. 267, 13–15.PubMedCrossRefGoogle Scholar
  15. 15.
    Strukelj B., Pungercar J., Mesko P., Barlic-Maganja D., Gubensek F., Kregar I., Turk V. 1992. Characterization of aspartic proteinase inhibitors from potato at the gene, cDNA and protein levels. Biol. Chem. Hoppe Seyler. 373, 477–482.PubMedCrossRefGoogle Scholar
  16. 16.
    Suh S.G., Peterson J.E., Stiekema W.J., Hannapel D.J. 1990. Purification and characterization of the 22-kilodalton potato tuber proteins. Plant Physiol. 94, 40–45.PubMedCrossRefGoogle Scholar
  17. 17.
    Werner R., Guitton M.C., Muhlbach H.P. 1993. Nucleotide sequence of a cathepsin D inhibitor protein from tomato. Plant Physiol. 103, 1473.PubMedCrossRefGoogle Scholar
  18. 18.
    Brenner E.D., Lambert K.N., Kaloshian I., Willamson V.M. 1998. Characterization of LeMir, a root-knot nematode-induced gene in tomato with an encoded product secreted from the root. Plant Physiol. 118, 237–247.PubMedCrossRefGoogle Scholar
  19. 19.
    Aoki K., Yano K., Suzuki A., et al. 2010. Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics. BMC Genomics. 11, 210.PubMedCrossRefGoogle Scholar
  20. 20.
    Hildmann T., Ebneth M., Peña-Cortes H., Sanchez-Serrano J.J., Willmitzer L., Prat S. 1992. General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding. Plant Cell. 4, 1157–1170.PubMedGoogle Scholar
  21. 21.
    Kreft S., Ravnikar M., Mesko P., Pungercar J., Umek A., Kregar I., Strukelj B. 1997. Jasmonic acid inducible aspartic proteinase inhibitors from potato. Phytochemistry. 44, 1001–1006.PubMedCrossRefGoogle Scholar
  22. 22.
    Barone A., Chiusano M.L., Ercolano M.R., Giuliano G., Grandillo S., Frusciante L. 2008. Structural and functional genomics of tomato. Int. J. Plant Genomics. 2008, 820274.PubMedCrossRefGoogle Scholar
  23. 23.
    Poczai P., Hyvonen J. 2011. On the origin of Solanum nigrum: can networks help? Mol. Biol. Rep. 38, 1171–1185.PubMedCrossRefGoogle Scholar
  24. 24.
    Edwards K., Johnstone C., Thompson C. 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 19, 1349.PubMedCrossRefGoogle Scholar
  25. 25.
    Peralta I.E., Spooner D.M. 2000. Classification of wild tomatoes: A review. Tomo. 28, 45–54.Google Scholar
  26. 26.
    Jacobs M.M., van den Berg R.G., Vleeshouwers V.G., Visser M., Mank R., Sengers M., Hoekstra R., Vosman B. 2008. AFLP analysis reveals a lack of phylogenetic structure within Solanum section Petota. BMC Evol. Biol. 8, 145.PubMedCrossRefGoogle Scholar
  27. 27.
    Poczai P., Taller J., Szabo I. 2008. Analysis of phylogenetic relationships in the genus Solanum (Solanaceae) as revealed by RAPD markers. Plant Syst. Evol. 275, 59–67.CrossRefGoogle Scholar
  28. 28.
    Spooner D.M., Anderson G.J., Jansen R.K. 1993. Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes, and pepinos (Solanaceae). Am. J. Bot. 80, 676–688.CrossRefGoogle Scholar
  29. 29.
    Bohs L., Olmstead R.G. 1997. Phylogenetic relationships in Solanum (Solanaceae) based on ndhF sequences. Syst. Bot. 22, 5–17.CrossRefGoogle Scholar
  30. 30.
    Olmstead R.G., Sweere J. A., Spangler R.E., Bohs L., Palmer J.D. 1999. Phylogeny and provisional classification of the Solanaceae based on chloroplast DNA. In: Solanaceae IV. Eds Nee M., Symon D.E., Lester R.N., Jessop J.P. Kew: Royal Botanical Gardens, pp. 111-137.Google Scholar
  31. 31.
    Peralta I.E., Spooner D.M. 2001. Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. section Lycopersicon [Mill.] Wettst. subsection Lycopersicon). Am. J. Bot. 88, 1888–1902.PubMedGoogle Scholar
  32. 32.
    Marshall J.A., Knapp S., Davey M.R., Power J.B., Cocking E.C., Bennett M.D., Cox A.V. 2001. Molecular systematics of Solanum section Lycopersicum (Lycopersicon) using the nuclear ITS rDNA region. Theor. Appl. Genet. 103, 1216–1222.CrossRefGoogle Scholar
  33. 33.
    Spooner D.M., Peralta I., Knapp S. 2005. Comparison of AFLPs with other markers from phylogenetic inference in wild tomatoes (Solanum L. section Lycopersicon (Mill.) Wettst.). Taxon. 54, 43–61.Google Scholar
  34. 34.
    Darwin S.C., Knapp S., Peralta I.E. 2003. Taxonomy of tomatoes in the Galapagos Islands: native and introduced species of Solanum section Lycopersicon (Solanaceae). Syst. Biodivers. 1, 29–53.CrossRefGoogle Scholar
  35. 35.
    Rodriguez F., Wu F., Ane C., Tanksley S., Spooner D.M. 2009. Do potatoes and tomatoes have a single evolutionary history, and what proportion of the genome supports this history? BMC Evol Biol. 9, 191.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. A. Krinitsina
    • 1
    • 2
  • N. V. Melnikova
    • 3
  • M. S. Belenikin
    • 3
    • 5
  • P. Poltronieri
    • 4
  • A. Santino
    • 4
  • A. V. Kudryavtseva
    • 3
  • A. M. Savilova
    • 6
  • A. S. Speranskaya
    • 1
    • 3
  1. 1.Biology DepartmentMoscow State UniversityMoscowRussia
  2. 2.Institute of Agricultural BiotechnologyRussian Academy of Agricultural SciencesMoscowRussia
  3. 3.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  4. 4.National Research Council of ItalyLecceItaly
  5. 5.Kulakov Research Center for Obstetrics, Gynecology, and PerinatologyMinistry of Health of the Russian FederationMoscowRussia
  6. 6.Research Institute for Physico-Chemical MedicineFederal Medical-Biological Agency of the Russian FederationMoscowRussia

Personalised recommendations