Skip to main content
Log in

Downregulation of human CCR5 gene expression with artificial microRNAs

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Chemokine receptor 5 (CCR5) is one of the two coreceptors that are utilized by the human immunodeficiency virus (HIV) to enter the cell. CCR5 inactivation is considered to be a promising approach to HIV therapy, including gene therapy. RNA interference provides a powerful tool to regulate gene expression and may be utilized to knockdown the CCR5 gene. Three artificial microRNAs (amiRNAs) directed to the human CCR5 gene were constructed, and their silencing activity was tested in indicator cells, which were derived from the HT1080 human cell line. A multiplexing of two or more amiRNAs in one transcript was shown to enhance the CCR5 gene silencing. A 95% reduction of CCR5 expression was achieved with the most efficient amiRNA combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HIV:

human immunodeficiency virus

amiRNA:

artificial microRNA

miRNA:

microRNA

shRNA:

short hairpin RNA

siRNA:

short interfering RNA

References

  1. Samson M., Libert F., Doranz B.J., Rucker J., Liesnard C., Farber C.M., Saragosti S., Lapoumeroulie C., Cognaux J., Forceille C., Muyldermans G., Verhofstede C., Burtonboy G., Georges M., Imai T., Rana S., Yi Y., Smyth R.J., Collman R.G., Doms R.W., Vassart G., Parmentier M. 1996. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature. 382, 722–725.

    Article  PubMed  CAS  Google Scholar 

  2. Lucotte G. 2002. Frequencies of 32 base pair deletion of the (Delta 32) allele of the CCR5 HIV-1 co-receptor gene in Caucasians: A comparative analysis. Infect. Genet. Evol. 1, 201–205.

    Article  PubMed  CAS  Google Scholar 

  3. Biti R., Ffrench R., Young J., Bennetts B., Stewart G., Liang T. 1997. HIV-1 infection in an individual homozygous for the CCR5 deletion allele. Nature Med. 3, 252–253.

    Article  PubMed  CAS  Google Scholar 

  4. O’Brien S.J., Moore J.P. 2000. The effect of genetic variation in chemokines and their receptors on HIV transmission and progression to AIDS. Immunol. Rev. 177, 99–111.

    Article  PubMed  Google Scholar 

  5. Zimmerman P.A., Buckler-White A., Alkhatib G., Spalding T., Kubofcik J., Combadiere C., Weissman D., Cohen O., Rubbert A., Lam G., Vaccarezza M., Kennedy P.E., Kumaraswami V., Giorgi J.V., Detels R., Hunter J., Chopek M., Berger E.A., Fauci A.S., Nutman T.B., Murphy P.M. 1997. Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5: studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Mol. Med. 3, 23–36.

    PubMed  CAS  Google Scholar 

  6. Allers K., Hütter G., Hofmann J., Loddenkemper C., Rieger K., Thiel E., Schneider T. 2011. Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation. Blood. 117, 2791–2799.

    Article  PubMed  CAS  Google Scholar 

  7. Cannon P., June C. 2011. Chemokine receptor 5 knockout strategies. Curr. Opin. HIV AIDS. 6, 74–79.

    Article  PubMed  Google Scholar 

  8. Butticaz C., Ciuffi A., Muñoz M., Thomas J., Bridge A., Pebernard S., Iggo R., Meylan P., Telenti A. 2003. Protection from HIV-1 infection of primary CD4 T cells by CCR5 silencing is effective for the full spectrum of CCR5 expression. Antivir. Ther. 8, 373–377.

    PubMed  CAS  Google Scholar 

  9. Shimizu S., Hong P., Arumugam B., Pokomo L., Boyer J., Koizumi N., Kittipongdaja P., Chen A., Bristol G., Galic Z., Zack J.A., Yang O., Chen I.S., Lee B., An D.S. 2010. A highly efficient short hairpin RNA potently down-regulates CCR5 expression in systemic lymphoid organs in the hu-BLT mouse model. Blood. 115, 1534–1544.

    Article  PubMed  CAS  Google Scholar 

  10. An D.S., Qin F.X., Auyeung V.C., Mao S.H., Kung S.K. 2006. Optimization and functional effects of stable short hairpin RNA expression in primary human lymphocytes via lentiviral vectors. Mol. Ther. 14, 494–504.

    Article  PubMed  CAS  Google Scholar 

  11. Anderson J., Akkina R. 2007. Complete knockdown of CCR5 by lentiviral vector-expressed siRNAs and protection of transgenic macrophages against HIV-1 infection. Gene Ther. 14, 1287–1297.

    Article  PubMed  CAS  Google Scholar 

  12. Grimm D., Streetz K.L., Jopling C.L., Storm T.A., Pandey K., Davis C.R., Marion P., Salazar F., Kay M.A. 2006. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 441, 537–541.

    Article  PubMed  CAS  Google Scholar 

  13. Castanotto D., Sakurai K., Lingeman R., Li H., Shively L., Aagaard L., Soifer H., Gatignol A., Riggs A., Rossi J., 2007. Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC. Nucleic Acids Res. 35, 5154–5164.

    Article  PubMed  CAS  Google Scholar 

  14. Scherr M., Eder M. 2007. Gene silencing by small regulatory RNAs in mammalian cells. Cell Cycle. 6, 444–449.

    Article  PubMed  CAS  Google Scholar 

  15. Makarova Yu.A., Krameriv D.A. 2007. Noncoding RNAs. Biochemistry (Moscow). 72(11), 1427–1448.

    Article  Google Scholar 

  16. Sibley C.R., Seow Y., Wood M.J. 2010. Novel RNA-based strategies for therapeutic gene silencing. Mol. Ther. 18, 466–476.

    Article  PubMed  CAS  Google Scholar 

  17. McBride J., Boudreau R.L., Harper S.Q., Staber S.Q., Monteys A.M., Martins I., Gilmore B.L., Burstein H., Peluso R.W., Polisky B., Carter B., Davidson B.L. 2008. Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc. Natl. Acad. Sci. U. S. A. 105, 5868–5873.

    Article  PubMed  CAS  Google Scholar 

  18. Boudreau R.L., Martins I., Davidson B.L. 2009. Artificial microRNAs as siRNA shuttles: Improved safety as compared to shRNAs in vitro and in vivo. Mol. Ther. 17(1), 169–175.

    Article  PubMed  CAS  Google Scholar 

  19. Nielsen T.T., Marion I., Hasholt L., Lundberg. C. 2009. Neuron-specific RNA interference using lentiviral vectors. J. Gene Med. 11, 559–569.

    Article  PubMed  CAS  Google Scholar 

  20. Shin K.J., Wall E.A., Zavzavadjian J.R., Santat L.A., Liu J., Hwang J., Rebres R., Roach T., Seaman W., Simon M., Fraser I. 2006. A single lentiviral vector platform for microRNA-based conditional RNA interference and coordinated transgene expression. Proc. Natl. Acad. Sci. U. S. A. 103, 13759–13864.

    Article  PubMed  CAS  Google Scholar 

  21. Liu Y.P., Haasnoot J., ter Brake O., Berkhout B., Konstantinova P. 2008. Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron. Nucleic Acids Res. 36, 2811–2824.

    Article  PubMed  CAS  Google Scholar 

  22. Aagaard L.A., Zhang J., von Eije K. J., Li H., Særom P., Amarzguioui M., Rossi J. 2008. Engineering and optimization of the miR-106b cluster for ectopic expression of multiplexed anti-HIV RNAs. Gene Ther. 115, 1536–1549.

    Article  PubMed  CAS  Google Scholar 

  23. Boom R., Sol C.J., Salimans M.M., Jansen C.L., Wertheim-van Dillen P.M. 1990. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 28, 495–503.

    PubMed  CAS  Google Scholar 

  24. Kim S.S., Peer D., Kumar P., Subramanya S., Wu H., Asthana D., Habiro K., Yang C., Manjunath N., Shimaoka M., Shankar P. 2010. RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice. Mol. Ther. 18, 370–376

    Article  PubMed  CAS  Google Scholar 

  25. Mäkinen P.I., Koponen J.I., Kärkkäinen A.M., Malm T.M., Pulkkinen K.H., Koistinaho J., Turunen M.P., Ylä-Herttuala S. 2006. Stable RNA interference: Comparison of U6 and H1 promoters in endothelial cells and in mouse brain. J. Gene Med. 8, 433–441.

    Article  PubMed  Google Scholar 

  26. Chung K.H., Hart C.C., Al-Bassam S., Avery A., Taylor J., Patel P. D., Vojtek A.B., Turner D.L. 2006. Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155. Nucleic Acids Res. 34(7), e53.

    Article  PubMed  Google Scholar 

  27. Sun D., Melegari M., Sridhar S., Rogler C.E., Zhu L. 2006. Multi-miRNA hairpin method that improves gene knockdown efficiency and provides linked multigene knockdown. Biotechniques. 41, 59–63.

    Article  PubMed  CAS  Google Scholar 

  28. McLaughlin J., Cheng D., Singer O., Lukacs R.U., Radu C.G., Verma I.M., Witte O.N. 2007. Sustained suppression of Bcr-Abl-driven lymphoid leukemia by microRNA mimics. Proc. Natl. Acad. Sci. U. S. A. 104, 20501–20506.

    Article  PubMed  CAS  Google Scholar 

  29. Zhou H., Xia X.G., Xu Z. 2005. An RNA polymerase II construct synthesizes short-hairpin RNA with a quantitative indicator and mediates highly efficient RNAi. Nucleic Acids Res. 33(6), e62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Glazkova.

Additional information

Original Russian Text © D.V. Glazkova, A.S. Vetchinova, E.V. Bogoslovskaya, Y.A. Zhogina, M.L. Markelov, G.A. Shipulin, 2013, published in Molekulyarnaya Biologiya, 2013, Vol. 47, No. 3, pp. 475–485.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glazkova, D.V., Vetchinova, A.S., Bogoslovskaya, E.V. et al. Downregulation of human CCR5 gene expression with artificial microRNAs. Mol Biol 47, 419–428 (2013). https://doi.org/10.1134/S0026893313030035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893313030035

Keywords

Navigation