Molecular Biology

, Volume 47, Issue 3, pp 419–428

Downregulation of human CCR5 gene expression with artificial microRNAs

  • D. V. Glazkova
  • A. S. Vetchinova
  • E. V. Bogoslovskaya
  • Y. A. Zhogina
  • M. L. Markelov
  • G. A. Shipulin
Cell Molecular Biology

Abstract

Chemokine receptor 5 (CCR5) is one of the two coreceptors that are utilized by the human immunodeficiency virus (HIV) to enter the cell. CCR5 inactivation is considered to be a promising approach to HIV therapy, including gene therapy. RNA interference provides a powerful tool to regulate gene expression and may be utilized to knockdown the CCR5 gene. Three artificial microRNAs (amiRNAs) directed to the human CCR5 gene were constructed, and their silencing activity was tested in indicator cells, which were derived from the HT1080 human cell line. A multiplexing of two or more amiRNAs in one transcript was shown to enhance the CCR5 gene silencing. A 95% reduction of CCR5 expression was achieved with the most efficient amiRNA combination.

Keywords

human CCR5 microRNA RNA interference HIV infection lentiviral vectors HT1080 indicator cells 

Abbreviations

HIV

human immunodeficiency virus

amiRNA

artificial microRNA

miRNA

microRNA

shRNA

short hairpin RNA

siRNA

short interfering RNA

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Samson M., Libert F., Doranz B.J., Rucker J., Liesnard C., Farber C.M., Saragosti S., Lapoumeroulie C., Cognaux J., Forceille C., Muyldermans G., Verhofstede C., Burtonboy G., Georges M., Imai T., Rana S., Yi Y., Smyth R.J., Collman R.G., Doms R.W., Vassart G., Parmentier M. 1996. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature. 382, 722–725.PubMedCrossRefGoogle Scholar
  2. 2.
    Lucotte G. 2002. Frequencies of 32 base pair deletion of the (Delta 32) allele of the CCR5 HIV-1 co-receptor gene in Caucasians: A comparative analysis. Infect. Genet. Evol. 1, 201–205.PubMedCrossRefGoogle Scholar
  3. 3.
    Biti R., Ffrench R., Young J., Bennetts B., Stewart G., Liang T. 1997. HIV-1 infection in an individual homozygous for the CCR5 deletion allele. Nature Med. 3, 252–253.PubMedCrossRefGoogle Scholar
  4. 4.
    O’Brien S.J., Moore J.P. 2000. The effect of genetic variation in chemokines and their receptors on HIV transmission and progression to AIDS. Immunol. Rev. 177, 99–111.PubMedCrossRefGoogle Scholar
  5. 5.
    Zimmerman P.A., Buckler-White A., Alkhatib G., Spalding T., Kubofcik J., Combadiere C., Weissman D., Cohen O., Rubbert A., Lam G., Vaccarezza M., Kennedy P.E., Kumaraswami V., Giorgi J.V., Detels R., Hunter J., Chopek M., Berger E.A., Fauci A.S., Nutman T.B., Murphy P.M. 1997. Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5: studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Mol. Med. 3, 23–36.PubMedGoogle Scholar
  6. 6.
    Allers K., Hütter G., Hofmann J., Loddenkemper C., Rieger K., Thiel E., Schneider T. 2011. Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation. Blood. 117, 2791–2799.PubMedCrossRefGoogle Scholar
  7. 7.
    Cannon P., June C. 2011. Chemokine receptor 5 knockout strategies. Curr. Opin. HIV AIDS. 6, 74–79.PubMedCrossRefGoogle Scholar
  8. 8.
    Butticaz C., Ciuffi A., Muñoz M., Thomas J., Bridge A., Pebernard S., Iggo R., Meylan P., Telenti A. 2003. Protection from HIV-1 infection of primary CD4 T cells by CCR5 silencing is effective for the full spectrum of CCR5 expression. Antivir. Ther. 8, 373–377.PubMedGoogle Scholar
  9. 9.
    Shimizu S., Hong P., Arumugam B., Pokomo L., Boyer J., Koizumi N., Kittipongdaja P., Chen A., Bristol G., Galic Z., Zack J.A., Yang O., Chen I.S., Lee B., An D.S. 2010. A highly efficient short hairpin RNA potently down-regulates CCR5 expression in systemic lymphoid organs in the hu-BLT mouse model. Blood. 115, 1534–1544.PubMedCrossRefGoogle Scholar
  10. 10.
    An D.S., Qin F.X., Auyeung V.C., Mao S.H., Kung S.K. 2006. Optimization and functional effects of stable short hairpin RNA expression in primary human lymphocytes via lentiviral vectors. Mol. Ther. 14, 494–504.PubMedCrossRefGoogle Scholar
  11. 11.
    Anderson J., Akkina R. 2007. Complete knockdown of CCR5 by lentiviral vector-expressed siRNAs and protection of transgenic macrophages against HIV-1 infection. Gene Ther. 14, 1287–1297.PubMedCrossRefGoogle Scholar
  12. 12.
    Grimm D., Streetz K.L., Jopling C.L., Storm T.A., Pandey K., Davis C.R., Marion P., Salazar F., Kay M.A. 2006. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 441, 537–541.PubMedCrossRefGoogle Scholar
  13. 13.
    Castanotto D., Sakurai K., Lingeman R., Li H., Shively L., Aagaard L., Soifer H., Gatignol A., Riggs A., Rossi J., 2007. Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC. Nucleic Acids Res. 35, 5154–5164.PubMedCrossRefGoogle Scholar
  14. 14.
    Scherr M., Eder M. 2007. Gene silencing by small regulatory RNAs in mammalian cells. Cell Cycle. 6, 444–449.PubMedCrossRefGoogle Scholar
  15. 15.
    Makarova Yu.A., Krameriv D.A. 2007. Noncoding RNAs. Biochemistry (Moscow). 72(11), 1427–1448.CrossRefGoogle Scholar
  16. 16.
    Sibley C.R., Seow Y., Wood M.J. 2010. Novel RNA-based strategies for therapeutic gene silencing. Mol. Ther. 18, 466–476.PubMedCrossRefGoogle Scholar
  17. 17.
    McBride J., Boudreau R.L., Harper S.Q., Staber S.Q., Monteys A.M., Martins I., Gilmore B.L., Burstein H., Peluso R.W., Polisky B., Carter B., Davidson B.L. 2008. Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc. Natl. Acad. Sci. U. S. A. 105, 5868–5873.PubMedCrossRefGoogle Scholar
  18. 18.
    Boudreau R.L., Martins I., Davidson B.L. 2009. Artificial microRNAs as siRNA shuttles: Improved safety as compared to shRNAs in vitro and in vivo. Mol. Ther. 17(1), 169–175.PubMedCrossRefGoogle Scholar
  19. 19.
    Nielsen T.T., Marion I., Hasholt L., Lundberg. C. 2009. Neuron-specific RNA interference using lentiviral vectors. J. Gene Med. 11, 559–569.PubMedCrossRefGoogle Scholar
  20. 20.
    Shin K.J., Wall E.A., Zavzavadjian J.R., Santat L.A., Liu J., Hwang J., Rebres R., Roach T., Seaman W., Simon M., Fraser I. 2006. A single lentiviral vector platform for microRNA-based conditional RNA interference and coordinated transgene expression. Proc. Natl. Acad. Sci. U. S. A. 103, 13759–13864.PubMedCrossRefGoogle Scholar
  21. 21.
    Liu Y.P., Haasnoot J., ter Brake O., Berkhout B., Konstantinova P. 2008. Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron. Nucleic Acids Res. 36, 2811–2824.PubMedCrossRefGoogle Scholar
  22. 22.
    Aagaard L.A., Zhang J., von Eije K. J., Li H., Særom P., Amarzguioui M., Rossi J. 2008. Engineering and optimization of the miR-106b cluster for ectopic expression of multiplexed anti-HIV RNAs. Gene Ther. 115, 1536–1549.PubMedCrossRefGoogle Scholar
  23. 23.
    Boom R., Sol C.J., Salimans M.M., Jansen C.L., Wertheim-van Dillen P.M. 1990. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 28, 495–503.PubMedGoogle Scholar
  24. 24.
    Kim S.S., Peer D., Kumar P., Subramanya S., Wu H., Asthana D., Habiro K., Yang C., Manjunath N., Shimaoka M., Shankar P. 2010. RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice. Mol. Ther. 18, 370–376PubMedCrossRefGoogle Scholar
  25. 25.
    Mäkinen P.I., Koponen J.I., Kärkkäinen A.M., Malm T.M., Pulkkinen K.H., Koistinaho J., Turunen M.P., Ylä-Herttuala S. 2006. Stable RNA interference: Comparison of U6 and H1 promoters in endothelial cells and in mouse brain. J. Gene Med. 8, 433–441.PubMedCrossRefGoogle Scholar
  26. 26.
    Chung K.H., Hart C.C., Al-Bassam S., Avery A., Taylor J., Patel P. D., Vojtek A.B., Turner D.L. 2006. Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155. Nucleic Acids Res. 34(7), e53.PubMedCrossRefGoogle Scholar
  27. 27.
    Sun D., Melegari M., Sridhar S., Rogler C.E., Zhu L. 2006. Multi-miRNA hairpin method that improves gene knockdown efficiency and provides linked multigene knockdown. Biotechniques. 41, 59–63.PubMedCrossRefGoogle Scholar
  28. 28.
    McLaughlin J., Cheng D., Singer O., Lukacs R.U., Radu C.G., Verma I.M., Witte O.N. 2007. Sustained suppression of Bcr-Abl-driven lymphoid leukemia by microRNA mimics. Proc. Natl. Acad. Sci. U. S. A. 104, 20501–20506.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhou H., Xia X.G., Xu Z. 2005. An RNA polymerase II construct synthesizes short-hairpin RNA with a quantitative indicator and mediates highly efficient RNAi. Nucleic Acids Res. 33(6), e62.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • D. V. Glazkova
    • 1
  • A. S. Vetchinova
    • 1
  • E. V. Bogoslovskaya
    • 1
  • Y. A. Zhogina
    • 1
  • M. L. Markelov
    • 2
  • G. A. Shipulin
    • 1
  1. 1.Central Research Institute for EpidemiologyMoscowRussia
  2. 2.Institute of Occupational HealthRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations