Molecular Biology

, Volume 47, Issue 2, pp 299–306 | Cite as

Structure of DNA complexes with chromosomal protein HMGB1 and histone H1 in the presence of manganese ions: 2. Vibrational circular dichroism spectroscopy

  • A. M. Polyanichko
  • V. I. Vorob’ev
  • E. V. Chikhirzhina
Structural and Functional Analysis of Biopolymers and Their Complexes

Abstract

DNA complexes with nonhistone HMGB1 chromatin protein and histone H1 in the presence of manganese ions were studied using methods of absorption and circular dichroism spectroscopy in the infrared region. It was demonstrated that the method provides good results, even for solutions that contain large particles, which cause scattering in UV region. It was determined that manganese ions in the complex are able to coordinate not only to different chemical groups in DNA, but also to dicarboxylic acid residues of the HMGB1 protein, which stimulates DNA condensation and slightly weakens DNA-protein interactions in the complex.

Keywords

DNA DNA-protein interactions IR/VCD spectroscopy manganese ions nonhistone HMGB1 protein linker histone H1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ner S.S. 1992. HMGs everywhere. Curr. Biol. 2, 208–210.PubMedCrossRefGoogle Scholar
  2. 2.
    Ramm E.I., Chikhirzhina E.V., Kostyleva E.I., Vorob’ev V.I. 1995. Conformational features of linker proteins of supercompact chromatin from marine invertebrate sperm. Biochemistry (Moscow). 60, 150–158.Google Scholar
  3. 3.
    Chikhirzhina E.V, Vorob’ev V.I. 2002. Linker histones: Conformational changes and the role in the structural organization of chromatin. Tsitologiya. 44, 721–736.Google Scholar
  4. 4.
    Travers A. 1999. The location of the linker histone on the nucleosome. Trends Biochem. Sci. 24, 4–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Jerzmanowski A. 2004. The linker histones. In: Chromatin Structure and Dynamics: State-of-the-Art. Eds. Zlatanova J., Leuba S.H. NY: Elsevier, pp. 75–102.CrossRefGoogle Scholar
  6. 6.
    Read C.M., Cary P.D., Crane-Robinson C., Driscoll P.C., Norman D.G. 1993. Solution structure of a DNA-binding domain from HMG1. Nucleic Acids Res. 21, 3427–3436.PubMedCrossRefGoogle Scholar
  7. 7.
    Ramakrishnan V., Fich J.T., Graziano V., Lee P.L., and Sweet, R.M. 1993. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature. 362, 219–223.PubMedCrossRefGoogle Scholar
  8. 8.
    Zlatanova J., van Holde K. 1998. Linker histones versus HMG1/2: A struggle for dominance? BioEssays. 20, 584–588.PubMedCrossRefGoogle Scholar
  9. 9.
    Polyanichko A.M., Wieser H. 2005. The FTIR/VCD spectroscopy as an informative tool for the investigation of large supramolecular complexes of biological macromolecules. Biopolymers. 78, 329–339.PubMedCrossRefGoogle Scholar
  10. 10.
    Chikhirzhina E.V., Polyanichko A.M., Kostyleva E.I., Vorobyev V.I. 2011. Structure of DNA complexes with chromosomal protein HMGB1 and histone H1 in the presence of manganese ions: 1. Circular dichroism spectroscopy. Mol. Biol. (Moscow). 45, 318–326.CrossRefGoogle Scholar
  11. 11.
    Polyanichko A., Wieser H. 2010. Structural organization of DNA-protein complexes of chromatin studied by vibrational and electronic circular dichroism. Spectroscopy. 24, 239–244.CrossRefGoogle Scholar
  12. 12.
    Polyanichko A.M., Davydenko S.G., Chikhirzhina E.V., Vorob’ev V.I. 2000 The interaction of supercoiled DNA with nonhistone protein HMG1. Tsitologiya. 42, 787–793.Google Scholar
  13. 13.
    Chikhirzhina E.V., Polyanichko A.M., Skvortsov A.N., Kostyleva E.I., Houssier C., Vorob’ev V.I. 2002. HMG1 domains: The victims of the circumstances. Mol. Biol. (Moscow). 36, 412–418.CrossRefGoogle Scholar
  14. 14.
    Polyanichko A.M., Chikhirzhina E.V., Skvortsov A.N., Kostyleva E.I., Colson P., Houssier C., Vorob’ev V.I. 2002. The HMG1 Ta(i)le. J. Biomol. Struct. Dyn. 19, 1053–1062.PubMedCrossRefGoogle Scholar
  15. 15.
    Chikhirzhina E., Polyanichko A., Leonenko Z., Wieser H., Vorobyev V. 2010. C-terminal domain of nonhistone protein HMGB1 as a modulator of HMGB1-DNA structural interactions. Spectroscopy. 24, 361–366.CrossRefGoogle Scholar
  16. 16.
    Polyanichko A.M., Leonenko Z.V., Kramb D., Wieser H., Vorob’ev V.I., Chikhirzhina E.V. 2008. Visualization of DNA complexes with HMGB1 and its C-truncated form HMGB1(A+B). Biophysics (Moscow). 53, 202–206.CrossRefGoogle Scholar
  17. 17.
    Rodionova T.Yu., Chikhirzhina E.V., Vorob’yov V.I., Polyanichko A.M. 2009. Changes in the secondary structure of HMGB1 protein bonded to DNA. J. Struct. Chem. 50, 976–981.CrossRefGoogle Scholar
  18. 18.
    Polyanichko A.M., Rodionova T.J., Vorob’ev V.I., Chikhirzhina E.V. 2011. Conformational properties of nuclear protein HMGB1 and specificity of its interaction with DNA. Cell Tissue Biol. 5, 114–119.CrossRefGoogle Scholar
  19. 19.
    Kohlstaedt L.A, Cole R.D. 1994. Specific interaction between H1 histone and high mobility protein HMG1. Biochemistry. 33, 570–575.PubMedCrossRefGoogle Scholar
  20. 20.
    Kohlstaedt L.A., Cole R.D. 1994. Effect of pH on interactions between DNA and high-mobility group protein HMG1. Biochemistry. 33, 12702–12707.PubMedCrossRefGoogle Scholar
  21. 21.
    Polyanichko A., Chikhirzhina E. 2012. Interaction between nonhistone protein HMGB1 and linker his-tone H1 facilitates the formation of structurally ordered DNA-protein complexes. Spectroscopy (The Netherlands). 27, 393–398.CrossRefGoogle Scholar
  22. 22.
    Saito K., Kikuchi T., Shirakawa H., Yoshida M. 1999. The stabilized structural array of two HMG1/2-boxes endowed by a linker sequence between them is requisite for the effective binding of HMG1 with DNA. J. Biochem. 125, 399–405.PubMedCrossRefGoogle Scholar
  23. 23.
    McCauley M.J., Zimmerman J., Maher L.J. 3rd, Williams M.C. 2007. HMGB binding to DNA: Single and double box motifs. J. Mol. Biol. 374, 993–1004.PubMedCrossRefGoogle Scholar
  24. 24.
    Khadake J.R., Rao M.R. 1995. DNA- and chromatin-condensing properties of rat testes H1a and H1t compared to those of rat liver H1bdec; H1t is a poor condenser of chromatin. Biochemistry. 34, 15792–15801.PubMedCrossRefGoogle Scholar
  25. 25.
    Polyanichko A.M., Chikhirzhina E.V., Kostyleva E.I., Vorob’ev V.I. 2004. Structure of DNA complexes with nonhistone chromosomal protein HMGB1 in the presence of manganese ions. Mol. Biol. (Moscow). 38, 891–898.CrossRefGoogle Scholar
  26. 26.
    Polyanichko A.M., Chikhirzhina E.V., Andrushchenko V.V., Kostyleva E.I., Wieser H., Vorob’ev V.I. 2004. The effect of Ca2+ ions on DNA compaction in the complex with HMGB1 nonhistone chromosomal protein. Mol. Biol. (Moscow). 38, 590–599.CrossRefGoogle Scholar
  27. 27.
    Polyanichko A., Andrushchenko V., Chikhirzhina E., Vorob’ev V., Wieser H. 2004. The effect of manganese(II) on DNA structure: Electronic and vibrational circular dichroism studies. Nucleic Acids Res. 32, 989–996.PubMedCrossRefGoogle Scholar
  28. 28.
    Shockett P.E., Schatz D.G. 1999. DNA hairpin opening mediated by the RAG1 and RAG2 proteins. Mol. Cell Biol. 19, 4159–4166.PubMedGoogle Scholar
  29. 29.
    Kriatchko A.N., Bergeron S., Swanson P.C. 2008. HMG-box domain stimulation of RAG1/2 cleavage activity is metal ion dependent. BMC Mol. Biol. 9, 32–42.PubMedCrossRefGoogle Scholar
  30. 30.
    Kim D.R., Oettinger M.A. 1998. Functional analysis of coordinated cleavage in V(D)J recombination. Mol. Cell Biol. 18, 4679–4688.PubMedGoogle Scholar
  31. 31.
    Fugmann S.D., Lee A.I., Shockett P.E., Villey I.J., Schatz D.G. 2000. The RAG proteins and V(D)J recombination: Complexes, ends, and transposition. Annu. Rev. Immunol. 18, 495–527.PubMedCrossRefGoogle Scholar
  32. 32.
    Bergeron S., Madathiparambil T., Swanson P.C. 2005. Both high mobility group (HMG)-boxes and the acidic tail of HMGB1 regulate recombination-activating gene (RAG)-mediated recombination signal synapsis and cleavage in vitro, J. Biol. Chem. 280, 31314–31324.PubMedCrossRefGoogle Scholar
  33. 33.
    Nafie L.A. 1997. Infrared and Raman vibrational optical activity: Theoretical and experimental aspects. Annu. Rev. Phys. Chem. 48, 357–376.PubMedCrossRefGoogle Scholar
  34. 34.
    Keiderling T.A. 1996. Vibrational circular dichroism applications to conformational analysis of biomolecules. In: Circular Dichroism and the Conformational Analysis of Biomolecules. Ed. Fasman G.D. NY: Plenum, pp. 555–598.CrossRefGoogle Scholar
  35. 35.
    Keiderling T.A. 2001. Vibrational circular dichroism of peptides and proteins: Survey of techniques, qualitative and quantitative analyses, and applications. In: Infrared and Raman Spectroscopy of Biological Materials. Eds. Bing Yan, Gremlich H.-U. NY: Marcel Dekker, vol. 24, pp. 55–100.Google Scholar
  36. 36.
    Polyanichko A.M., Wieser H. 2007. Vibrational circular dichroism and its applications to protein studies. In: Methods in Protein Structure and Stability Analysis: Vibrational Spectroscopy. Eds. Permyakov E., Uversky V. NY: Nova Sci., pp. 267–302.Google Scholar
  37. 37.
    Polyanichko A.M., Andrushchenko V.V., Bou P., Wieser H. 2012. Vibrational circular dichroism studies of biological macromolecules and their complexes. In: Circular Dichroism: Theory and Spectroscopy. Ed. Rodgers D.S. NY: Nova Sci., pp. 67–126.Google Scholar
  38. 38.
    Tsankov D., Eggimann T., Wieser H. 1995. An alternative design for improved FTIR-VCD capabilities. Appl. Spectrosc. Rev. 49, 132–138.CrossRefGoogle Scholar
  39. 39.
    Andrushchenko V., Leonenko Z., Cramb D., van De S.H., Wieser H. 2001. Vibrational CD (VCD) and atomic force microscopy (AFM) study of DNA interaction with Cr3+ ions: VCD and AFM evidence of DNA condensation. Biopolymers. 61, 243–260.PubMedCrossRefGoogle Scholar
  40. 40.
    Andrushchenko V., van De S.H., Wieser H. 2003. DNA interaction with Mn2+ ions at elevated temperatures: VCD evidence of DNA aggregation. Biopolymers. 69, 529–545.PubMedCrossRefGoogle Scholar
  41. 41.
    Tsuboi M. 1969. Application of infrared spectroscopy to structural studies of nucleic acids. Appl. Spectrosc. Rev. 3, 45–90.CrossRefGoogle Scholar
  42. 42.
    Baumruk V., Keiderling T.A. 1993. Vibrational circular dichroism of proteins in H2O solution. J. Am. Chem. Soc. 115, 6939–6942.CrossRefGoogle Scholar
  43. 43.
    Barth A., Zscherp C. 2002. What vibrations tell us about proteins. Q. Rev. Biophys. 35, 369–430.PubMedCrossRefGoogle Scholar
  44. 44.
    Wang L., Yang L., Keiderling T.A. 1994. Vibrational circular dichroism of A-, B-, and Z-form nucleic acids in the PO2-stretching region. Biophys. J. 67, 2460–2467.PubMedCrossRefGoogle Scholar
  45. 45.
    Andrushchenko V., Wieser H., Bou P. 2002. B-Z conformational transition of DNA monitored by vibrational circular dichroism: Ab initio interpretation of the experiment. J. Phys. Chem. B. 106, 12623–12634.CrossRefGoogle Scholar
  46. 46.
    Taillandier E., Liquier J., Taboury J.A. 1985. Infrared spectral studies of DNA conformations. In: Advances in Infrared and Raman Spectroscopy. Eds. Clark R.J.H., Hester R.E. NY: Wiley-Heyden, pp. 65–114.Google Scholar
  47. 47.
    Taillandier E. 1990. Nucleic acid conformations studied by vibrational spectroscopy. In: Structure and Methods. Eds. Sarma R.H., Sarma M.H. NY: Adenine Press, vol. 3, pp. 73–78.Google Scholar
  48. 48.
    Sissoeff I., Grisvard J., Guille E. 1976. Studies on metal ions-DNA interactions: Specific behaviour of reiterative DNA sequences. Prog. Biophys. Mol. Biol. 31, 165–199.PubMedCrossRefGoogle Scholar
  49. 49.
    Granot J., Feigon J., Kearns D.R. 1982. Interactions of DNA with divalent metal ions: 1. 31P-NMR studies. Biopolymers. 21, 181–201.PubMedCrossRefGoogle Scholar
  50. 50.
    Granot J., Kearns D.R. 1982. Interactions of DNA with divalent metal ions: 2. Proton relaxation enhancement studies. Biopolymers. 21, 203–218.PubMedCrossRefGoogle Scholar
  51. 51.
    Granot J., Kearns D.R. 1982. Interactions of DNA with divalent metal ions: 3. Extent of metal binding: Experiment and theory. Biopolymers. 21, 219–232.PubMedCrossRefGoogle Scholar
  52. 52.
    Hadden J.M., Declais A.-C., Phillips S.E.V., Lilley M.J. 2002. Metal ions bound at the active site of the junction resolving enzyme T7 endonuclease. EMBO J. 21, 3505–3515.PubMedCrossRefGoogle Scholar
  53. 53.
    Yamagata A., Kakuta Y., Masui R., Fukuyama K. 2002. The crystal structure of exonuclease RecJ bound to Mn2+ ion suggests how its characteristic motifs are involved in exonuclease activity. Proc. Natl. Acad. Sci. U. S. A. 99, 5908–5912.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. M. Polyanichko
    • 1
    • 2
  • V. I. Vorob’ev
    • 1
    • 2
  • E. V. Chikhirzhina
    • 2
  1. 1.Department of PhysicsSt. Petersburg State UniversitySt. Petersburg, Staryi PitergofRussia
  2. 2.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations