Molecular Biology

, Volume 47, Issue 1, pp 55–74 | Cite as

The problems of molecular phylogenetics with the example of squamate reptiles: Mitochondrial DNA markers



The review considers the current problems of molecular phylogenetics based on mitochondrial and chromosomal DNA sequences. The emphasis is placed on mtDNA markers, which are widely employed in reconstructing molecular evolution, but often without a critical analysis of the physiological and biochemical features of mitochondria that affect the adequacy and reliability of the results. In addition to the factors that make mtDNA-based phylogenies difficult to interpret (unrecognized hybridization and introgression events, ancestral polymorphism, and nuclear paralogs of mtDNA sequences), attention is paid to the nonneutrality and unequal mutation rates of mtDNA genes and their fragments, violations of uniparental inheritance of mitochondria, recombination events, natural heteroplasmy, and mtDNA haplotypic diversity. These factors may influence the congruence of phylogenetic inferences and trees constructed for the same organisms with different mtDNA markers or with mitochondrial and nuclear markers. The review supports the viewpoint that mitochondrial genes and their fragments fail to provide reliable evolutionary markers when considered without a thorough study of the environmental conditions and life of the taxa. The influence of external conditions on the metabolism and physiology of mitochondria cannot be taken into account in full nor modeled well enough for phylogenetic applications. It is assumed that mtDNA is valuable as a phylogenetic marker primarily because its complete sequence may be analyzed to identify the apomorphic and synmorphic properties of a taxon and to search for informative nuclear paralogs of mtDNA for phylogeographical studies and estimations of relative evolution times.


molecular phylogenetics reptiles Squamata mtDNA markers heteroplasmy paralogs of mitochondrial genes mtDNA recombination nonneutrality of mtDNA evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moore W.S. 1995. Inferring phylogenies from mtDNA variation: Mitochondrial-gene trees versus nucleargene trees. Evolution. 49, 718–726.CrossRefGoogle Scholar
  2. 2.
    Wiens J.J., Penkrot T.A. 2002. Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus). Syst. Biol. 51, 69–91.PubMedCrossRefGoogle Scholar
  3. 3.
    Grechko V.V. Molecular markers in phylogeny and systematics. Russ. J. Genet. 38, 851–868.Google Scholar
  4. 4.
    Engstrom T.M., Schaffer H.B., McCord W.P. 2004. Multiple data set, high homoplasy, and the phylogeny of softshell turtles (Testudines: Trionychidae). Syst. Biol. 53, 693–710.PubMedCrossRefGoogle Scholar
  5. 5.
    McCracken K.G., Sorenson M.D. 2005. Is homology or lineage sorting the source of incongruent mtDNA and nucler gene trees in the stiff-tailed ducks (Nomonycs-Oxyura)? Syst. Biol. 54, 35–55.PubMedCrossRefGoogle Scholar
  6. 6.
    Skinner A., Donnellan S.C., Hutchinson M.N., Hutchinson R.G. 2005. A phylogenetic analysis of Pseudonaja (Hydrophiinae, Elapidae, Serpentes) based ob mitochondrial DNA sequences. Mol. Phyl. Evol. 37, 558–571.CrossRefGoogle Scholar
  7. 7.
    Sorenson M.D., Quinn T.W. 1998. Numts: A challenge for avian systematics and population biology. The Auk. 115, 214–221.CrossRefGoogle Scholar
  8. 8.
    Weisrock D.W., Smith S.D., Chan L.M., Biebouw K., Kappeler P.M., Yoder A.D. 2012. Concatenation and concordance in the reconstruction of the mouse lemur phylogeny: An empirical demonstration of the effect of allele sampling in phylogeny. Mol. Biol. Evol. doi 10.1093/molbev/mss008Google Scholar
  9. 9.
    Greaves S.N.J., Chapple D.G., Gleeson D.M., Daugherty C.H., Ritchie P.A. 2007. Phylogeography of the spotted skink (Oligosoma lineoocellatum) and green skink (O. chloronoton) species complex (Lacertilia: Scincidae) in New Zealand reveals pre-Pleistocene divergence. Mol. Phyl. Evol. 45, 729–739.CrossRefGoogle Scholar
  10. 10.
    Solovyeva E.N., Poyarkov N.A., Dunaev E.A., Duysenbayeva T.N., Bannikova A.A. 2011. Molecular differentiation and taxonomy of the sunwatcher toadheaded agama species complex Phrynocephalus super-species helioscopus (Pallas, 1771) (Reptilia: Agamidae). Russ. J. Genet. 47, 842–856.CrossRefGoogle Scholar
  11. 11.
    Brower A.V.Z., DeSalle R., Vogler A. 1996. Gene trees, species trees, and systematics: A cladistic perspective. Annu. Rev. Ecol. Syst. 27, 423–450.CrossRefGoogle Scholar
  12. 12.
    Losos J.B., Jackman T.R., Larson A., De Queirroz K., Rodrigues-Shettino L. 1998. Contingency and determinism in replicated adaptive radiations of island lizards. Science. 279, 2115–2118.PubMedCrossRefGoogle Scholar
  13. 13.
    Hanley T.C., Caccone A. 2005. Development of primers to characterization the mitochondrial control region of Galapagos land and marine iguanas (Conolophus and Ambleyrhynchus). Mol. Ecol. Notes. 5, 599–601.CrossRefGoogle Scholar
  14. 14.
    Kurabayashi A., Sumida M., Yonekawa H., Glaw F., Hasegawa M. 2008. Phylogeny, recombination, and mechanisms of stepwise mitochondrial genome reorganization in mantelliid frogs from Madagascar. Mol. Biol. Evol. 25, 874–891.PubMedCrossRefGoogle Scholar
  15. 15.
    Ballard J.W.O., Whitlock M.C. 2004. The incomplete natural history of mitochondria. Mol. Ecol. 13, 729–744.PubMedCrossRefGoogle Scholar
  16. 16.
    Moritz C., Brown W.M. 1987. Tandem duplications in animal mitochondrial DNAs: Variation in incidence and gene content among lizards. Proc. Natl. Acad. Sci. U. S. A. 84, 7183–7187.PubMedCrossRefGoogle Scholar
  17. 17.
    Brown W.M., Prager E.M., Wang A., Wilson A.C. 1982. Mitochondrial DNA sequences of primates: Tempo and mode of evolution. J. Mol. Evol. 18, 225–239.PubMedCrossRefGoogle Scholar
  18. 18.
    Tsaousis A.D., Martin D.P., Ladoukakis E.D., Posada D., Zouros E. 2005. Widespread recombination in published animal mtDNA sequences. Mol. Biol. Evol. 22, 925–933.PubMedCrossRefGoogle Scholar
  19. 19.
    Castellana S., Vicario S., Saccone C. 2011. Evolutionary patterns of the mitochondrial genome in Metazoa: Exploring the role of mutation and selection in mitochondrial protein-coding genes. Genome Biol. Evol. 3, 1067–1079.CrossRefGoogle Scholar
  20. 20.
    Moritz C., Dowling T.E., Brown W.M. 1987. Evolution of the animal mitochondrial DNA: Relevance for population biology and systematics. Annu. Rev. Ecol. Syst. 18, 269–292.CrossRefGoogle Scholar
  21. 21.
    Crother B.I., Presh W. 1994. Xantusiid lizards, concern for analysis, and the search for a best estimate of phylogeny: Furter comments. Mol. Phyl. Evol. 3, 272–275.CrossRefGoogle Scholar
  22. 22.
    Hedges S.B., Bazy R.L. 1994. Reply: Xantusiid lizards and phylogenetic inference. Mol. Phyl. Evol. 3, 275–278.CrossRefGoogle Scholar
  23. 23.
    Palumbi S.R., Baker C.S. 1994. Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales. Mol. Biol. Evol. 11, 426–435.PubMedGoogle Scholar
  24. 24.
    Ballard J.W., Kreitman M. 1995. Is mitochondrial DNA a strictly neutral marker? Trends Ecol. Evol. 10, 485–489.PubMedCrossRefGoogle Scholar
  25. 25.
    Lunt D.H., Hymen B.C. 1997. Animal mitochondrial DNA recombination. Nature. 387, 247.PubMedCrossRefGoogle Scholar
  26. 26.
    Curole J.P., Kocher T.D. 1999. Mitogenomics: Digging deeper with complete mitochondrial genomes. Trends Ecol. Evol. 14, 394–308.PubMedCrossRefGoogle Scholar
  27. 27.
    Vorontsov N.N. 1999. Razvitie evolyutsionnykh idei v biologii (Development of Evolution Ideas in Biology). Moscow: ABF Publ.Google Scholar
  28. 28.
    Ballard J.W.O., Chernoff B., James A.C. 2002. Divergence of mitochondrial DNA is not corroborated by nuclear DNA, morphology, or behaviour in Drosophila simulans. Evolution. 56, 527–545.PubMedGoogle Scholar
  29. 29.
    Zink R.M., Barrowclough G.F. 2008. Mitochondrial DNA under siege in avian phylogeography. Mol. Ecol. 17, 2107–2121.PubMedCrossRefGoogle Scholar
  30. 30.
    Shoo L.P., Rose R., Doughty P., Austin J.J., Melville J. 2008. Diversification patterns of pebble-mimic dragons are consistent with historical disruption of important habitat corridors in arid Australia. Mol. Phyl. Evol. 48, 528–542.CrossRefGoogle Scholar
  31. 31.
    Edwards S.V. 2009. Is a new and general theory of molecular systematics emerging? Evolution. 63, 1–19.PubMedCrossRefGoogle Scholar
  32. 32.
    Camargo A., Sinervo B., Sites J.W., jr. 2010. Lizards as a model organisms for linking phylogeographic and speciation studies. Mol. Ecol. 19, 3250–3270.PubMedCrossRefGoogle Scholar
  33. 33.
    Planet P.J. 2006. Tree disagreement: Measuring and testic incongruence in phylogenies. J. Biomed. Inform. 39, 86–102.PubMedCrossRefGoogle Scholar
  34. 34.
    Verdue-Ricoy J., Carranza S., Salvator A., BU. S. Ack S.D., Diaz J.A. 2010. Phylogeography of Psammodromus algirus (Lacertidae) revisited: Systematic implications. Amphibia-Reptilia. 31, 576–582.CrossRefGoogle Scholar
  35. 35.
    Godinho R., Crespo E.G., Ferrand N. 2008. The limits of mtDNA phylogeography: Complex patterns of population history in the highly structured Iberian lizard are only revealed by the use of nuclear markers. Mol. Ecol. 17, 4670–4683.PubMedCrossRefGoogle Scholar
  36. 36.
    Dolman G., Moritz C. 2006. A multilocus perspective on refugial isolation and divergence in reinforest skinks (Carlia). Evolution. 60, 573–582.PubMedGoogle Scholar
  37. 37.
    Sequiera F., Alexandrino J., Wess S., Ferrand N. 2008. Documenting the advantage and limitations of different classes of molecular markers in a well-established phylogeographic context: Lessons from the Iberian endemic golden-stripped salamander, Chioglossa lusitanica (Caudata: Salamandridae). Biol. J. Linn. Soc. 95, 371–387.CrossRefGoogle Scholar
  38. 38.
    Leache A.D. 2010. Species tree for spiny lizards (genus Sceloporus): Identifying points of concordance and conflict between nuclear and mitochondrial data. Mol. Phyl. Evol. 54, 162–171.CrossRefGoogle Scholar
  39. 39.
    Fisher-Reid M.C., Wiens J.J. 2011. What are the consequences of combining nuclear sand mitochondrial data for phylogenetic analysis? Lessons from Plethodon salamanders and 13 other vertebrate clades. BMC Evol. Biol. 11, 300–320.PubMedCrossRefGoogle Scholar
  40. 40.
    Korpelainen H. 2004. The evolutionary processes of mitochondrial and chloroplast genomes differ from those of nuclear genomes. Naturwissenschaften. 91, 505–518.PubMedCrossRefGoogle Scholar
  41. 41.
    Degnan J.H., Rosenberg N.A. 2006. Discordance of species trees with their most likely gene trees. PLoS Genet. 2, e68.PubMedCrossRefGoogle Scholar
  42. 42.
    Holland B.R., Benthin S., Lockart P.J., Moulton V., Huber K.T. 2008. Using supernetworks to distinguish hybridization from lineage-sorting. BMC Evol. Biol. 8, 202–213.PubMedCrossRefGoogle Scholar
  43. 43.
    Degnan J.H., Rosenberg N.A. 2009. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24, 332–340.PubMedCrossRefGoogle Scholar
  44. 44.
    Hickerson M.J., Carstens B.C., Cavender-Bares J., Crandall K.A., Graham C.H., Johnson J.B., Rissler L., Victoriano P.F., Yoder A.D. 2010. Phylogeography’s past, present, and future: 10 years after Avise, 2000. Mol. Phyl. Evol. 54, 291–301CrossRefGoogle Scholar
  45. 45.
    Pollard D.A., Iyer V.N., Moses A.M., Eisen M.B. 2006. Widespread discordance of gene trees with species tree in Drosophila: Evidence for incomplete lineage sorting. PLoS Genet. 2, e173.PubMedCrossRefGoogle Scholar
  46. 46.
    MacGuire J.A., Linkem C.W., Koo M.S., Hutchinson D.W., Lappin A.K., Orange D.I., Lemos-Espinal J., Riddle B.R., Jaeger J.R. 2007. Mitochondrial introgression and incomplete lineage sorting through space and time: Phylogenetics of crotaphytid lizards. Evolution. 61, 2879–2897.CrossRefGoogle Scholar
  47. 47.
    Knowless L.L., Carstens B.C. 2007. Delimiting species without monophyletic gene trees. Syst. Biol. 56, 887–895.CrossRefGoogle Scholar
  48. 48.
    Leache A.D., Koo M.S., Spencer C.L., Papenfuss T.J., Fischer R.N. 2009. Quantifying ecological, morphological, and genetic variation to delimit species in the coast horned lizard species complex (Phrynosoma). Proc. Natl. Acad. Sci. U. S. A. 106, 12418–12423.PubMedCrossRefGoogle Scholar
  49. 49.
    Benavides E., Baum R., McClellan D., Sites J.W., jr. 2007. Molecular phylogenetics of the lizard genus Microlophus (Squamata: Tropiduridae): Aligning and retrieving indel signals from nuclear introns. Syst. Biol. 56, 776–797.PubMedCrossRefGoogle Scholar
  50. 50.
    Kmiec B., Woloszynska M., Janska H. 2006. Heteroplasmy as a common state of mitochondrial genetic information in plants and animals. Curr. Genet. 50, 149–159.PubMedCrossRefGoogle Scholar
  51. 51.
    Grechko V.V. 2011. Repeated DNA sequences as an engine of biological diversification. Mol. Biol. (Moscow) 45, 704–727.CrossRefGoogle Scholar
  52. 52.
    Leache A.D., McGuire J.A. 2006. Phylogenetic relationships of horned lizards (Phrynosoma) based on nuclear and mitochondrial data: Evidence for a misleading mitochondrial gene tree. Mol. Phyl. Evol. 39, 628–644.CrossRefGoogle Scholar
  53. 53.
    Leache A.D., Reeder T.W. 2002. Molecular systematics of the eastern fence lizard (Sceloporus undulates): A comparison of parsimony, likelihood, and Bayesian approaches. Syst. Biol. 51, 44–68.PubMedCrossRefGoogle Scholar
  54. 54.
    Douglas D.A., Arnason U. 2009. Examining the utility of categorical models and alleviating artifacts in phylogenetic reconstruction of the Squamata (Reptilia). Mol. Phyl. Evol. 52, 784–796.CrossRefGoogle Scholar
  55. 55.
    Lindell J., Mendez-de la Cruz. F.R., Murphy R.W. 2005. Deep genealogical history without population differentiation: Discordance between mtDNA and allozyme divergence in the zebra-tailed lizard (Gallisaurus draconoides). Mol. Phyl. Evol. 36, 682–694.CrossRefGoogle Scholar
  56. 56.
    Rowlings L.H., Rabosky D.L., Donnellan S.C., Hutchinson M.N. 2008. Python phylogenetics: Inference from morphology and mitochondrial DNA. Biol. J. Linn. Soc. 93, 603–619.CrossRefGoogle Scholar
  57. 57.
    Honda M., Ota H., Murphy R.W., Hikida T. 2006. Phylogeny and biogeography of water skinks of the genus Tropidophorus (Reptilia: Scincidae): A molecular approach. Zool. Scripta. 35, 85–95.CrossRefGoogle Scholar
  58. 58.
    Yang Z., Rannala B. 2010. Bayesian species delimitation using multilocus sequence data. Proc. Natl. Acad. Sci. U. S. A. 107, 9264–9269.PubMedCrossRefGoogle Scholar
  59. 59.
    Russo C.A.M., Takezaki N., Nei M. 1996. Efficiency of different genes and the different tree-building methods in recovering a known vertebrate phylogeny. Mol Biol. Evol. 13, 525–536.PubMedCrossRefGoogle Scholar
  60. 60.
    Giribet G., Wheeler W.C. 1999. On gaps. Mol. Phyl. Evol. 13, 132–143.CrossRefGoogle Scholar
  61. 61.
    Simmons M.P., Ochoterena H. 2000. Gaps as character in sequence-based phylogenetic analysis. Syst. Biol. 49, 369–381.PubMedCrossRefGoogle Scholar
  62. 62.
    Miclosh I., Lunter G.A., Holmes I. 2004. A “long indel” model for evolutionary sequence alignment. Mol. Biol. Evol. 21, 529–540.Google Scholar
  63. 63.
    Ashton K.G., De Queiroz A. 2001. Molecular systematics of the western rattlesnake, Crotalus viridis (Viperidae), with comments on the utility of the Dloop in the phylogenetic studies of snakes. Mol. Phyl. Evol. 21, 176–189.CrossRefGoogle Scholar
  64. 64.
    Gatesy J., Baker R.H. 2005. Hidden likelihood support in genomics data: Can forty-five wrongs make a right? Syst Biol. 54, 483–492.PubMedCrossRefGoogle Scholar
  65. 65.
    Gadagkar S.R., Rosenberg M.S., Kumar S. 2005. Inferring species phylogenies from multiple genes: Concatenated sequence tree versus consensus gene tree. J. Exp. Zool. (Mol. Dev. Evol.) 304B, 64–74.CrossRefGoogle Scholar
  66. 66.
    Kubatko L.S., Degnan J.H. 2007. Inconsistency of phylogenetic estimates from concatenated data under coalescence. Syst. Biol. 56, 17–24.PubMedCrossRefGoogle Scholar
  67. 67.
    Liu L., Pearl D.K., Brumfield R.T., Edwards S.V. 2008. Estimating species trees ueing multiple-allele DNA sequence data. Evolution. 62, 2080–2091.PubMedCrossRefGoogle Scholar
  68. 68.
    Maddison W.P., Knowless L.L. 2006. Inferring phylogeny despite incomplete lineage sorting. Syst. Biol. 55, 21–30.PubMedCrossRefGoogle Scholar
  69. 69.
    Keogh I.S., Edwards D.L., Fisher R.N., Harlow P.S. 2008. Molecular and morphological analysis of the critically endangered Fijian iguanas reveals cryptic diversity and a complex biogeographic history. Phil. Trans. R. Soc. B. doi:10.1098/rstb.2008.0120Google Scholar
  70. 70.
    Wiens J.J., Hollingsworth B.D. 2000. War of the iguanas: Conflicting molecular and morphological phylogenies and long-branch attraction in iguanid lizards. Syst. Biol. 49, 143–159.PubMedCrossRefGoogle Scholar
  71. 71.
    Oliviero M., Bolgna M.A., Mariottini P. 2000. Molecular biogeography of the Mediterranean lizards Podarcis Wagler, 1830, and Teira Gray, 1838 (Reptilia, Lacertidae). J. Biogeogr. 27, 1403–1420.CrossRefGoogle Scholar
  72. 72.
    Slowinsky J.B. 2001. Molecular polytomies. Mol. Phyl. Evol. 18, 114–120.CrossRefGoogle Scholar
  73. 73.
    Suzuki Y., Glazko G.V., Nei M. 2002. Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proc. Natl. Acad. Sci. U. S. A. 99, 16138–16143.PubMedCrossRefGoogle Scholar
  74. 74.
    Townsend T., Larson A. 2002. Molecular phylogenetics and mitochondrial genomic evolution in the Chamaeleonidae (Reptilia, Squamata). Mol. Phyl. Evol. 23, 22–36.CrossRefGoogle Scholar
  75. 75.
    Jennings W.B., Pianka E.R., Donnellan S. 2003. Systematics of the lizard family Pygopodidae with implications for the diversification of Australian temperate biota. Syst. Biol. 52, 757–780.PubMedGoogle Scholar
  76. 76.
    Kolaczkowski B., Thornton J.W. 2004. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature. 431, 980–984.PubMedCrossRefGoogle Scholar
  77. 77.
    Castoe T.A., Parkinson C.L. 2006. Bayesian mixed models and the phylogeny of pitvipers (Viperidae: Serpentes). Mol. Phyl. Evol. 39, 91–110.CrossRefGoogle Scholar
  78. 78.
    Melvill J., Ritchie E.G., Chapple S.N.J., Glor R.E., Schulte J.A. II. 2011. Evolutionary origins and diversification of dragon lizards in Australia’s tropical savannas. Mol. Phyl. Evol. 58, 257–270.CrossRefGoogle Scholar
  79. 79.
    Petit R.J., Excoffier L. 2009. Gene flow and species delimitation. Trends Ecol. Evol. 24, 386–395.PubMedCrossRefGoogle Scholar
  80. 80.
    Zamudio K.R., Jones K.B., Ward R.H. 1997. Molecular systematics of short-horned lizards: Biogeography and taxonomy of a widespread species complex. Syst. Biol. 46, 284–305.PubMedCrossRefGoogle Scholar
  81. 81.
    Pang J., Wang Y., Zhong Y., Hoelzerl A.R., Papenfuss T.J., Zeng X., Ananjeva N.B., Zhang Y. 2003. A phylogeny of Chinese species in the genus Phrynocephalus (Agamidae) inferred from mitochondrial DNA sequences. Mol. Phyl. Evol. 27, 398–409.CrossRefGoogle Scholar
  82. 82.
    Melvill J., Hale J., Mantziou G., Ananjeva N.B., Milto K. 2009. Historical biogeography, phylogenetic relationships and intraspecific diversity of agamid lizards in the Central Asian deserts of Kazakhstan and Uzbekistan. Mol. Phyl. Evol. 53, 99–112.CrossRefGoogle Scholar
  83. 83.
    Castoe T.A, De Koning A.P.J, Kim H.-M., Gu W., Noonan B.P., Naylor G., Jiang Z.J., Parkinson C.L., Pollock D.D. 2009. Evidence for an ancient adaptive episode of convergent molecular evolution. Proc. Natl. Acad. Sci. U. S. A. 106, 8986–8991.PubMedCrossRefGoogle Scholar
  84. 84.
    Templeton A.R. 2009. Why does a method that fails continue to be used? The answer. Evolution. 63, 807–812.PubMedCrossRefGoogle Scholar
  85. 85.
    Templeton A.R. 2010. Coalescent-based, maximum likelihood inference in phylogeography. Mol. Ecol. 19, 431–435.PubMedCrossRefGoogle Scholar
  86. 86.
    Knowless L.L. 2008. Why does a method that fails continue to be used? Evolution. 62, 2713–2717.CrossRefGoogle Scholar
  87. 87.
    Beaumont M.A., Nielsen R., Robert C., et al. 2010. In defence of model-based inference in phylogeography. Mol. Ecol. 19, 436–446.CrossRefGoogle Scholar
  88. 88.
    Paulo O.S., Jordan W.C., Bruford M.W., Nichols R.A. 2002. Using nested clade analysis to assess the history of colonization and the persistence of populations of the Iberian lizard. Mol. Ecol. 11, 809–819.PubMedCrossRefGoogle Scholar
  89. 89.
    Morando M., Avila L.J., Sites J.W., jr. 2003. Sampling strategies for delimiting species: genes, individuals, and populations in the Liolaemus elongates-kriegi complex (Squamata: Liolaemidae) in Andean-Patagonian South America. Syst. Biol. 52, 159–185.PubMedCrossRefGoogle Scholar
  90. 90.
    Gifford M.E., Larson A. 2008. In situ genetic difference in Ameiva chrysolaemus: Multilocus perspective. Mol. Phyl. Evol. 49, 277–291CrossRefGoogle Scholar
  91. 91.
    O’Meara B.C. 2010. New heuristic methods for joint species delimitation and species tree inference. Syst. Biol. 59, 59–73.PubMedCrossRefGoogle Scholar
  92. 92.
    Chapple D.G., Keogh J.S., Hutchinson M.N. 2004. Molecular phylogeography and systematics of the arid-zone members of the Egernia whitii (Lacertilia: Scincidae) species group. Mol. Phyl. Evol. 33, 549–561.CrossRefGoogle Scholar
  93. 93.
    Giribet G., DeSalle R., Wheeler W.C. 2002. “Pluralism” and the aims of phylogenetic research. In: Molecular Systematics and Evolution. Basel: Birkhauser Verlag, p. 141.Google Scholar
  94. 94.
    Eckert A.J., Carstens B.C. 2008. Does gene flow destroy phylogenetic signal? The performance of three methods for estimating species phylogenies in the presence of gene flow. Mol. Phyl. Evol. 49, 832–842.CrossRefGoogle Scholar
  95. 95.
    Heled J., Drummond A.J. 2010. Bayesian inference of species trees from multilocus data. Mol. Biol. Evol. 27, 570–580.PubMedCrossRefGoogle Scholar
  96. 96.
    Delsuc F., Brinkmann H., Philippe H. 2005. Phylogenomics and the reconstruction of the Tree of Life. Nature Rev. Genet. 6, 361–375.PubMedCrossRefGoogle Scholar
  97. 97.
    Alifanov V.R. 2007. Lizards in the dinosaurus era. Priroda (Moscow) 9, 47–58.Google Scholar
  98. 98.
    Janes D. E., Organ C.L., Fujita M.K., Shedlock A.M., Edwards S.V. 2010. Genome evolution in Reptilia, the sister group of Mammals. Annu. Rev. Genom. Hum. Genet. 11, 239–264.CrossRefGoogle Scholar
  99. 99.
    Hedges S.B., Vidal N. 2009. Lizards, snakes, and amphisbaenians (Squamata). In: The Timetree of Life. Eds. Hedges S.B., Kumar S. Oxford: Oxford Univ. Press, pp. 383–389.Google Scholar
  100. 100.
    Sites J.W., Davis S.K., Guerra T., Iverson J.B., Snell H.L. 1996. Character congruence and phylogenetic signal in molecular and morphological data sets: A case study in the living iguanas (Squamata, Iguanidae). Mol. Biol Evol. 13, 1087–1105.PubMedCrossRefGoogle Scholar
  101. 101.
    Macey J.R., Larson A., Ananjeva N.B., Papenfuss T.J. 1997. Evolutionary shifts in the three major structural features of the mitochondrial genome among iguanian. J. Mol. Biol. 44, 660–674.Google Scholar
  102. 102.
    Fuller S., Baverstock P., King D. 1998. Biogeographic origins of goannas (Varanidae): A molecular perspective. Mol. Phyl. Evol. 9, 294–307.CrossRefGoogle Scholar
  103. 103.
    Harris D.J. 1999. Molecular systematics and evolution of lacertid lizards. Nat. Croat. 8, 161–180.Google Scholar
  104. 104.
    Frost D.R., Rodrigues M.T., Grant T., Titus T.A. 2001. Phylogenetics of the lizards genus Tropidurus (Squamata: Tropiduridae: Tropidurinae): Direct optimization, descriptive efficiency, and sensitivity analysis of congruence between molecular data and morphology. Mol. Phyl. Evol. 21, 352–371.CrossRefGoogle Scholar
  105. 105.
    Bromham L., Woolfit M., Lee M.S.Y., Rambaut A. 2002. Testing the relationship between morphological and molecular rates of change along phylogenies. Evolution. 56, 1921–1930.PubMedGoogle Scholar
  106. 106.
    Schulte J.A. II, Valladares J.P., Larson A. 2003. Phylogenetic relationships within Iguanidae inferred using molecular and morphological data and a phylogenetic taxonomy of iguanian lizards. Herpetologica. 56, 399–319.CrossRefGoogle Scholar
  107. 107.
    Whiting A.S., Bauer A.M., Sites J.W., jr. 2003. Phylogenetic relationships and limb loss in sub-Saharan African scincine lizards (Squamata: Scincidae). Mol. Phyl. Evol. 29, 582–598.CrossRefGoogle Scholar
  108. 108.
    Townsend T.M., Larson A., Louis E., Macey J.R. 2004. Molecular phylogenetics of Squamata: The position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Syst. Biol. 53, 735–757.PubMedCrossRefGoogle Scholar
  109. 109.
    Vidal N., Hedges S.B. 2009. The molecular evolution tree of lizards, snakes and amphysbaenians. C. R. Biologies. 332, 129–139.PubMedCrossRefGoogle Scholar
  110. 110.
    Carranza S., Arnold E.N. 2006. Systematics, biogeography, and evolution of Hemidactylus geckos (Reptilia: Gekkonidae) elucidated using mitochondrial DNA sequences. Mol. Phyl. Evol. 38, 531–545.CrossRefGoogle Scholar
  111. 111.
    Fry B.G., Vidal N., Norman J.A., Vonk F.J., Scheib H., Ramjan S.F.R., Kuruppu S., Fung K., Hedges S.B., Richardson M.K., Hodgson W.C., Ignjatovic V., Summerhayes R., Kochva E. 2006. Early evolution of the venom system in lizards and snakes. Nature. 439, 584–588.PubMedCrossRefGoogle Scholar
  112. 112.
    Arnold E.N., Arribas O., Carranza S. 2007. Systematics of the Palaearctic and Oriental lizard tribe Lacertini (Squamata: Lacertidae: Lacertinae), with description of eight new genera. Zootaxa. 1430, 1–86.Google Scholar
  113. 113.
    Kumazawa Y. 2007. Mitochondrial genome from major lizard families suggest their phylogenetic relationships and ancient radiation. Gene. 388, 19–26.PubMedCrossRefGoogle Scholar
  114. 114.
    Carretero M.A. 2008. An integrated assessment of a group with complex systematics: Iberomaghrebian lizard genus Podarcis (Squamata: Lacertidae). Integr. Zool. 4, 247–266.CrossRefGoogle Scholar
  115. 115.
    Kaply P., Limberakis P., Poulakakis N., Mantziou G., Parmakelis A., Mylonas M. 2008. Molecular phylogeny of three Mesalina (Reptilia: Lacertidae) species (M. gattulata, M. brevirostris, and M. bahaeldini) from the North Africa and the Middle East: Another case of paraphyly? Mol. Phyl. Evol. 49, 102–110.CrossRefGoogle Scholar
  116. 116.
    Conrad J.L. 2008. Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bull. Am. Mus. Nat. Hist. 310, 1–182.CrossRefGoogle Scholar
  117. 117.
    Keogh J.S. 1998. Molecular phylogeny of elapid snakes and a consideration of their biogeographic history. Biol. J. Linn. Soc. 63, 177–203.CrossRefGoogle Scholar
  118. 118.
    Dong S., Kumazawa Y. 2005. Complete mitochondrial DNA sequences of six snakes: Phylogenetic relationships and molecular evolution of genomic features. J. Mol. Evol. 61, 12–22.PubMedCrossRefGoogle Scholar
  119. 119.
    Lee M.S., Hugall A.F., Lawson R., Scanlon J.D. 2007. Phylogeny of snakes (Serpentes): Combining morphological and molecular data in likelihood, Bayesian and parsimony analyses. Syst. Biodivers. 5, 371–389.CrossRefGoogle Scholar
  120. 120.
    Voris H.K., Karns D.R., Feldheim K.A., Kechavarti B., Rinehart M. 2008. Multiple paternity in the Oriental-Australian rear-ranged watersnake (Homalopsidae). Herp. Cons. Biol. 3, 88–102.Google Scholar
  121. 121.
    Alfaro M.E., Karns D.R., Voris H.K., Brock C.D., Stuart B.L. 2008. Phylogeny, evolutionary history, and biogeograpny of Oriental-Australian rear-ranged water snakes (Colubroidea: Homalopsidae) inferred from mitochondrial and nuclear DNA sequences. Mol. Phyl. Evol. 46, 576–593.CrossRefGoogle Scholar
  122. 122.
    Rest J.S., Ast J.C., Austin C.C., Waddell P.J., Tibbetts E.A., Hay J.M., Mindell D.P. Molecular systematics of primary reptilian lineages and the tuatara mitochondrial genome. Mol. Phyl. Evol. 29, 289–297.Google Scholar
  123. 123.
    Bryson R.W. Jr., Pastorini J., Burbrink F.T., Forstner M.R.J. 2007. A phylogeny of the Lampropeltis mexicana (Serpentes: Colubridae) based on mitochondrial DNA sequences suggests evidence for species-level polyphyly within Lampropeltis. Mol. Phyl. Evol. 43, 674–684.CrossRefGoogle Scholar
  124. 124.
    Cox S.C., Carranza S., Brown R.P. 2010. Divergence times and colonization of the Canary Islands by Gallotia lizards. Mol. Phyl. Evol. 56, 747–757.CrossRefGoogle Scholar
  125. 125.
    Guicking D., Lawson R., Joger U., Wink M. 2006. Evolution and phylogeny of the genus Natrix (Serpentes: Colubridae). Biol. J. Linn. Soc. 87, 127–143.CrossRefGoogle Scholar
  126. 126.
    Nardi F., Carapelli A., Fanciully P.P., Dallai R., Frati F. 2001. The complet mitochondrial DNA sequence of the basal hexapod Tetrodontophora bielanensis: Evidence for heteroplasmy and tRNA translocations. Mol. Biol. Evol. 18, 1923–1304.CrossRefGoogle Scholar
  127. 127.
    Lawson R., Slowinski J.B., Crother B.I., Burbink F.T. 2005. Phylogeny of the Colubroidea (Serpentes): New evidence from mitochondrial and nuclear genes. Mol. Phyl. Evol. 37, 581–601.CrossRefGoogle Scholar
  128. 128.
    Torres-Carvajal O., Schulte J.A. II, Cadle J.E. 2006. Phylogenetic relationships of South American lizards of the genus Stenocercus (Squamata: Iguania): A new approach using a general mixture model for gene sequence data. Mol. Phyl. Evol. 39, 171–185.CrossRefGoogle Scholar
  129. 129.
    Moritz C. 1994. Defining “evolutionary significant units” for cobservation. Trends Ecol. Evol. 9, 373–375.PubMedCrossRefGoogle Scholar
  130. 130.
    Honda M., Ota H., Sengoku S., Yong H.-S., Hikida T. 2002. Molecular evaluation of phylogenetic significances in the highly divergent karyotypes of the genus Gonocephalus (Reptilia: Agamidae) from tropical Asia. Zool. Sci. 19, 129–133.PubMedCrossRefGoogle Scholar
  131. 131.
    Gillooly J.F., Allen A.P., West G.B., Brown J.H. 2005. The rate of DNA evolution: Effects of body size and temperature on the molecular clock. Proc. Natl. Acad. Sci. U. S. A. 102, 140–145.PubMedCrossRefGoogle Scholar
  132. 132.
    Rand D.M. 1994. Thermal habit, metabolic rate and the evolution of mitochondrial DNA. Trends Ecol. Evol. 9, 125–131.PubMedCrossRefGoogle Scholar
  133. 133.
    Birky C.W., jr. 2001. The inheritance of genes in mitochondria and chloroplasts: Laws, mechanisms, and models. Annu. Rev. Genet. 35, 125–148.PubMedCrossRefGoogle Scholar
  134. 134.
    Nunn G.B., Stanley S.E. 1998. Body size effects and rates of cytochrome c evolution in tube-nosed seabirds. Mol. Biol. Evol. 15, 1360–1371.PubMedCrossRefGoogle Scholar
  135. 135.
    Soudheimer N., Glatz C.E., Tirone J.E., Deardorf M.A., Krieger A.M., Hakonarson H. 2011. Neutral mitochondrial heteroplasmy and the influence of aging. Hum. Mol. Genet. 20, 1653–1659.CrossRefGoogle Scholar
  136. 136.
    Bromham L. 2002. Molecular clocks in reptiles: Life history influences the rate of molecular evolution. Mol. Biol. Evol. 19, 302–309.PubMedCrossRefGoogle Scholar
  137. 137.
    Vitt L.J., Pianka E.R. 2004. Historical patterns in lizard ecology: What teiids can tell us about lacertids. In: The Biology of Lacertid Lizards. Evolutionary and Ecological Perspectives. Eds. Perrez-Melado V., Riera V., Perere A. Institut Menorqui d’Estudis, vol. 8, pp. 139–157.Google Scholar
  138. 138.
    Droge W. 2002. Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47–95.PubMedGoogle Scholar
  139. 139.
    Wallace D.C. 2010. Mitochondrial DNA mutations in desease and aging. Environ. Mol. Mutagen. 51, 440–450.PubMedGoogle Scholar
  140. 140.
    Daniels S.R., Heideman N.J.L., Hendrics M.G.J., Mokone M.E., Crandall K.A. 2005. Unravelling evolutionary lineages in the limbless fossorial skinks genus Acontias (Sauria: Scincidae): Are subspecies equivalent systematic units? Mol. Phyl. Evol. 34, 645–654.CrossRefGoogle Scholar
  141. 141.
    Edwards D.L., Melvill J. 2011. Extensive phylogeographic and morphological diversity in Diporiphore nobbi (Agamidae) leads to a taxonomic review and a new species description. J. Herpetol. 45, 530–546.CrossRefGoogle Scholar
  142. 142.
    Cinnery P.F., Dahl H.H.M. 2000. The inheritance of mitochondrial DNA heteroplasmy: Random drift, selection, or both? Trends Genet. 16, 500–505.CrossRefGoogle Scholar
  143. 143.
    Zhao X., Li N., Guo W., Hu X., Liu Z., Gong G., Wang A., Feng J., Wu C. 2004. Further evidence for paternal inheritance of mtDNA in the sheep (Ovis aries). Heredity. 93, 399–403.PubMedCrossRefGoogle Scholar
  144. 144.
    Schwartz M., Vissing J. 2002. Paternal inheritance of mitochondrial DNA. N. Engl. J. Med. 347, 576–580.PubMedCrossRefGoogle Scholar
  145. 145.
    Kraytsberg Y., Schwartz M., Brown T.A., Ebralidse K., Kunz W.S., Clayton D.A., Vissing J., Khrapko K. 2004. Recombination of human mitochondrial DNA. Science. 304, 981.PubMedCrossRefGoogle Scholar
  146. 146.
    Laloi D., Richard M., Lecomte J., Massot L., Clobert J. 2004. Multiple paternity in clutches of common lizard Lacerta vivipara: Data from microsatellite markers. Mol. Ecol. 13, 719–723.PubMedCrossRefGoogle Scholar
  147. 147.
    Grzybowski T., Malyarchuk B.A., Czarny J., Miscicka-Sliwka., Kotzbach R. 2003. High level of mitochondrial DNA heteroplasmy in single hair roots: Reanalysis and revision. Electrophoresis. 24, 1159–1165.PubMedCrossRefGoogle Scholar
  148. 148.
    Wallis G.P. 1999. Do animal mitochondrial genomes recombine? Trends Ecol. Evol. 14, 209–210.PubMedCrossRefGoogle Scholar
  149. 149.
    Gyllensten U.B., Wharton D., Joseffson A., Wilson A.C. 1991. Paternal inheritance of mitochondrial DNA in mice. Nature. 352, 255–257.PubMedCrossRefGoogle Scholar
  150. 150.
    Hagelberg E. 2003. Recombination or mutational rates heterogeneity? Implications for mitochondrial Eve. Trends Genet. 19, 84–90.PubMedCrossRefGoogle Scholar
  151. 151.
    Podnar M., Meyer W., Tvrtkovic N. 2005. Biogeography of the Italian wall lizard, Podarcis sicula, as revealed by mitochondrial DNA sequences. Mol. Ecol. 14, 575–588.PubMedCrossRefGoogle Scholar
  152. 152.
    Townsend T.M., Larson A., Louis E., Macey J.R. 2004. Molecular phylogenetics of Squamata: The position of snakes, amphysbaenians, and dibamids, and the root of the Squamata. Syst. Biol. 53, 735–757.PubMedCrossRefGoogle Scholar
  153. 153.
    Croucher P.J.P., Oxford G.S., Searle J.B. 2004. Mitochondrial differentiation, introgression and phylogeny of species in the Tegenaria atrica group (Araneae: Agelenidae). Biol. J. Linn. Soc. 81, 79–89.CrossRefGoogle Scholar
  154. 154.
    Densmore L.D., Wright J.W., Brown W.M. 1985. Length variation and heteroplasmy are frequent in mitochondrial DNA from parthenogenetic and bisexual lizards (genus Cnemidophorus). Genetics. 110, 689–707.PubMedGoogle Scholar
  155. 155.
    Fonseca M.M., Brito J.C., Paulo O.S., Carretero M.A., Harris D.J. 2009. Systematic and phylogeographic assessment of the Acanthodactilus erythrurus group (Reptilia: Lacertidae) based on phylogenetic analyses of mitochondrial and nuclear DNA. Mol. Phyl. Evol. 51, 131–142.CrossRefGoogle Scholar
  156. 156.
    Jenuth J.P., Peterson A.C., Shoubridge E.A. 1997. Tissue-specific selection for different mtDNA genotypes in heteroplasmic mice. Nature Genet. 16, 93–95.PubMedCrossRefGoogle Scholar
  157. 157.
    Ast J.C. 2001. Mitochondrial DNA evidence and evolution in Varanoidea (Squamata). Cladistics. 17, 211–226.CrossRefGoogle Scholar
  158. 158.
    Petri B., von Haeseler A., Paabo S. 1996. Extreme sequence heteroplasmy in bat mitochondrial DNA. Biol. Chem. 377, 661–667.PubMedGoogle Scholar
  159. 159.
    Frey J.E., Frey B. 2004. Origin of intra-individual variation in PCR-amplified mitochondrial cytochrome oxidase I of Thrips tabaci (Thysanoptera: Thripidae): Mitochondrial heteroplasmy or nuclear integration? Hereditas. 140, 92–98.PubMedCrossRefGoogle Scholar
  160. 160.
    Funk D.J., Omland K.E. 2003. Species-level paraphyly: Frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu. Rev. Ecol. Evol. Syst. 34, 397–423.CrossRefGoogle Scholar
  161. 161.
    Reiner J.E., Kishare R.B., Levin B.C., Albanetti T., Boire N., Knipe A., Helmerson K., Deckman K.H. 2010. Detection of heteroplasmic mitochondrial DNA in single mitochondria. PLoS ONE. 5, e14359.PubMedCrossRefGoogle Scholar
  162. 162.
    Nachman M.W., Brown W.M., Stoneking M., Aquadro C.F. 1996. Nonneutral mitochondrial DNA variation in humans and chimpanzees. Genetics. 142, 953–963.PubMedGoogle Scholar
  163. 163.
    Jackman T.R., Irschnic D.J., De Quairroz K., Losos J.B., Larson A. 2002. Molecular phylogenetic perspective on evolution of lizards of the Anolis grahami series. J. Exp. Zool. (Mol. Biol. Dev. Evol.). 294B, 1–16.CrossRefGoogle Scholar
  164. 164.
    Thorpe R.S., Leadbeater D.L., Pook C.E. 2005. Molecular clock and geological dates: Cytochrome b of Anolis extremus substantially contradicts dating of Barnados emergence. Mol. Ecol. 14, 2087–2096.PubMedCrossRefGoogle Scholar
  165. 165.
    Pereira S.L., Baker A.J. 2006. A multigenomic timescale for birds defects variable phylogenetic rates of molecular evolution and refute the standart molecular clock. Mol. Biol. Evol. 23, 1731–1740.PubMedCrossRefGoogle Scholar
  166. 166.
    Smith S.A., Sadler R.A., Bauer A.M., Austin C.C., Jackman T. 2007. Molecular phylogeny of the scincid lizards of New Caledonia and adjacent areas: Evidence for a single origin of the endemic skinks of Tasmania. Mol. Phyl. Evol. 43, 1151–1166.CrossRefGoogle Scholar
  167. 167.
    Weinreich D.M., Rand D.M. 2000. Contrasting patterns of nonneutral evolution in proteins encoded in nuclear and mitochondrial genomes. Genetics. 156, 385–399.PubMedGoogle Scholar
  168. 168.
    Bazin E., Glemin S., Galtier N. 2006. Population size does not influence mitochondrial genetic diversity in animals. Science. 312, 570–572.PubMedCrossRefGoogle Scholar
  169. 169.
    Hudson R.R., Torelli M. 2003. Stochasticity overrules the “three-times rule”: Genetic drift, genetic draft, and coalescence times for nuclear loci versus mitochondrial DNA. Evolution. 57, 182–190.PubMedGoogle Scholar
  170. 170.
    Irwin D.M., Kocher T.D., Wilson A.C. 1991. Evolution of the cytochrome b gene of mammals. J. Mol. Evol. 32, 128–144.PubMedCrossRefGoogle Scholar
  171. 171.
    Lopez P., Casane D., Philippe H. 2002. Heterotachy, an important process of protein evolution. Mol. Biol. Evol. 19, 1–7.PubMedCrossRefGoogle Scholar
  172. 172.
    Jiang Z.J., Castoe T.A., Austin C.C., Burbrink F.T., Herron M.D., McGuire J.A., Parkinson C.L., Pollock D.D. 2007. Comparative mitochondrial genomics of snakes: Extraordinary substitution rate dynamics and functionality of the duplicated control region. BMC Evol. Biol. 7, 123–137.PubMedCrossRefGoogle Scholar
  173. 173.
    Kumazawa Y. 2004. Mitochondrial DNA sequences of five squamates: Phylogenetic affiliation of snakes. DNA Res. 11, 137–144.PubMedCrossRefGoogle Scholar
  174. 174.
    Hebert P.D.N., Cywinska A., Ball S.L., De Waard J.R. 2003. Bilogical identifications through DNA barcodes. Proc. R. Soc. London. 270, 313–321.CrossRefGoogle Scholar
  175. 175.
    Norman J.E., Gray M.W. 2001. A complex organization of the gene encoding cytochrome oxidase subunit 1 in the mitochondrial genome of the dinoflagellate, Crypthecodinium cohnii: Homologous recombination generates two different cox1 open reading frames. J. Mol. Evol. 53, 351–363.PubMedCrossRefGoogle Scholar
  176. 176.
    Rubinoff D., Cameron S., Will K. 2006. A genomic perspective on the shortcomings of mitochondrial DNA for “barcoding” identification. J. Hered. 97, 581–594.PubMedCrossRefGoogle Scholar
  177. 177.
    Harris D.J., Sa-Sousa P. 2001. Species distinction and relationships of the western Iberian Podarcis lizards (Reptilian, Lacertidae) based on morphology and mitochondrial DNA sequences. Herpetol. J. 11, 129–136.Google Scholar
  178. 178.
    Meyer A. 1994. Shortcomings of the cytochrome b gene as molecular marker. Trends Ecol. Evol. 9, 278–280.PubMedCrossRefGoogle Scholar
  179. 179.
    Kocher T.D., Thomas W.K., Meyer A., Edwards S.V., Paabo S., Villablanca F.X., Wilson A.C. 1989. Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. U. S. A. 86, 6196–6200.PubMedCrossRefGoogle Scholar
  180. 180.
    Castoe T., De Koning A.P., Kim H.-M., Gu W., Noonan B.P., Naylor G., Jiang Z.J., Parkinson C.L., Pollock D.D. 2009. Evidence for an ancient adaptive episode of convergent molecular evolution. Proc. Natl. Acad. Sci. U. S. A. 106, 8986–8991.PubMedCrossRefGoogle Scholar
  181. 181.
    Albert E.M., San Mauro D., Garcia-Paris M., Ruber L., Zardoya R. 2009. Effect of taxon sampling on recovering the phylogeny of squamate reptiles based on complete mitochondrial genome and nuclear gene sequence data. Gene. 441, 12–21.PubMedCrossRefGoogle Scholar
  182. 182.
    Baker R.J., Bradly R.D. 2006. Speciation in mammals and the genetic species concept. J. Mammal. 87, 643–662.PubMedCrossRefGoogle Scholar
  183. 183.
    Chen Q.-L., Tang X.-S., Yao W.-J., Lu S.-Q. 2009. Bioinformatics analysis the complete sequences of cytochrome b of Takydromus sylvaticus and modeling the tertiary structure of encoded protein. Int. J. Biol. Sci. 5, 596–602.PubMedCrossRefGoogle Scholar
  184. 184.
    Rokas A., Ladoukakis E., Zouros E. 2003. Animal mitochondrial DNA recombination revisited. Trends Ecol. Evol. 18, 411–417.CrossRefGoogle Scholar
  185. 185.
    Shierup M.H., Hein J. 2000. Consequences of recombination on traditional phylogenetic analysis. Genetics. 156, 879–891.Google Scholar
  186. 186.
    Posada D., Crandal K.A. 2002. The effect of recombination on the accuracy of phylogenetic estimation. J. Mol. Evol. 54, 396–402.PubMedGoogle Scholar
  187. 187.
    Piganeau G., Gardner M., Eyre-Walker A. 2004. A broad survey of recombination in animal mitochondria. Mol. Biol. Evol. 21, 2319–2325.PubMedCrossRefGoogle Scholar
  188. 188.
    Macey J.R., Schulte J.A., Ananjeva N.B., Larson A., Rastegar-Pouyani N., Shammakov S.M., Pappenfus T.J. 1998. Phylogenetic relationships among agamid lizards of Laudakia caucasica species group: Testing hypothesis of biogeographical fragmentation and an area cladogram for the Iranian plateau. Mol. Phyl. Evol. 10, 118–131.CrossRefGoogle Scholar
  189. 189.
    Hoarau G., Holla S., Lescasse R., Stam W.T., Olsen J.L. 2002. Heteroplasmy and evidence for recombination in the mitochondrial control region of the flatfish Plathichtys felesus. Mol. Biol. Evol. 19, 2261–2264.PubMedCrossRefGoogle Scholar
  190. 190.
    Shao R., Mitani H., Barker S.C., Takahasi M., Fukunaga M. 2005. Novel mt gene content and gene arrangement indicate illegitimate inter-mtDNA recombination in the chigger mite, Leptotrombidium pallidum. J. Mol. Evol. 60, 764–773.PubMedCrossRefGoogle Scholar
  191. 191.
    Okajima Y., Kumazawa Y. 2010. Mitochondrial genomes of acrodont lizards: Timing of gene rearrangements and phylogenetic and biogeographic implications. BMC Evol. Biol. 10, 141–156.PubMedCrossRefGoogle Scholar
  192. 192.
    Amer S.A.M., Kumazawa Y. 2005. Mitochondrial genome of Pogona vitticeps (Reptilia: Agamidae): Control region duplication and the origin of Australian agamids. Gene. 346, 249–256.PubMedCrossRefGoogle Scholar
  193. 193.
    Amer S.A.M., Kumazawa Y. 2008. Timing of a mtDNA gene rearrangement and interconcontinental dispersal of varanid lizards. Gene Genet. Syst. 83, 275–280.CrossRefGoogle Scholar
  194. 194.
    Sammler S., Bleidorn C., Tiedemann R. 2011. Full mitochondrial genome sequences of two endemic Philippine hornbill species (Aves: Bucerotidae) provide evidence for pervasive mtDNA recombination. BMC Genomics. 12, 35.PubMedCrossRefGoogle Scholar
  195. 195.
    Chan K.M.A., Levin S.A. 2005. Leaky prezygotic isolation and porous genomes: Rapid introgression of maternally inherited DNA. Evolution. 59, 720–729.PubMedGoogle Scholar
  196. 196.
    Bensasson D., Zhang D.-X., Hartl D.L., Hewitt G.M. 2001. Mitochondrial pseudogenes: Evolution’s misplaced witnesses. Trends Ecol. Evol. 16, 314–322.PubMedCrossRefGoogle Scholar
  197. 197.
    Hazkani-Covo E., Zeller R.M., Martin W. 2010. Molecular poltersgeites: Mitochondrial DNA copies (numts) in sequenced nuclear genome. PLOS Genet. 6, e10000834.CrossRefGoogle Scholar
  198. 198.
    Gaziev A.I., Shaikaev G.O. 2010. Nuclear mitochondrial pseudogenes. Mol. Biol. (Moscow). 44, 358–368.CrossRefGoogle Scholar
  199. 199.
    Sunnick P., Hales D.F. 1996. Numerous transposed sequences of mitochondrial cytochrom oxidase I–II in aphids of the genus Sitobion (Hemiptera: Aphydae). Mol. Biol. Evol. 13, 510–524.CrossRefGoogle Scholar
  200. 200.
    Woischnic M., Moraes C.T. 2002. Pattern of organization of human mitochondrial pseudogenes in the nuclear genome. Genome Res. 12, 885–893.Google Scholar
  201. 201.
    Lopez P., Yuhki N., Masuda R., Modi W., O’Brien S.J. 1994. Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. J. Mol. Evol. 39, 174–190.PubMedGoogle Scholar
  202. 202.
    Zhang D.-X., Hewitt G.M. 1996. Nuclear integrations: Challenges for mitochondrial DNA markers. Trends Ecol Evol. 11, 247–251.PubMedCrossRefGoogle Scholar
  203. 203.
    Greenwood A., Paabo S. 1999. Nuclear insertion sequences of mtDNA predominant in haire but not in blood of elephants. Mol. Ecol. 8, 133–137.PubMedCrossRefGoogle Scholar
  204. 204.
    Mishmar D., Ruiz-Pesini E., Brandon M., Wallace D.C. 2004. Mitochondrial DNA-like sequences in the nucleus (Numt): Insights into our African origins and the mechanism of foregn DNA integration. Hum. Mutat. 23, 125–133.PubMedCrossRefGoogle Scholar
  205. 205.
    Triant D.A., DeWoody J.A. 2007. The occurrence, detection, and avoidance of mitochondrial DNA translocations in mammalian systematics amd phylogeography. J. Mammal. 88, 908–920.CrossRefGoogle Scholar
  206. 206.
    Dorner M., Altmann M., Paabo S., Morl M. 2001. Evidence for import of lysyl-tRNA into marsupial mitochondria. Mol. Biol. Cell. 12, 2688–2698.PubMedGoogle Scholar
  207. 207.
    Funes S., Davidson E., Claros M.G., van List R., Perez-Martinez X., Varquez-Acevedo M., King M.P., Gonzalez-Halphen D. 2002. The typically mitochondrial DNA-encoded ATP6 subunit of the F1F0ATPase is encoded by a nuclear gene in Chlamidomonas reinhardtii. J. Biol. Chem. 277, 6051–6058.PubMedCrossRefGoogle Scholar
  208. 208.
    Miraldo A., Hewitt G.M., Dear P.H., Paulo D.S., Emerson B.C. 2012. Numts help us to reconstruct the demographic history of the ocellated lizard (Lacreta lepida) in a secondary contact zone. Mol. Ecol. 21, 1005–1018.PubMedCrossRefGoogle Scholar
  209. 209.
    Podnar M., Haring E., Pinsker W., Mayer W. 2007. Unusual origin of a nuclear pseudogene in the Iberian wall lizard: Intergenomic and interspecific transfer of a large section of the mitochondrial genome in the genus Podarcis (Lacertidae). J. Mol. Evol. 64, 308–320.PubMedCrossRefGoogle Scholar
  210. 210.
    Kizirian D., Trager A., Donnelly M.A., Wright J.W. 2004. Evolution of Galapagos Island lava lizards (Iguania: Tropiduridae: Microlophus). Mol. Phyl. Evol. 32, 761–769.CrossRefGoogle Scholar
  211. 211.
    Jesus J., Harris D.J., Brehm A. 2005. Phylogeography of Mabuya maculilabris (Reptilia) from Sao Tome Island (Gulf of Guinea) inferred from mtDNA sequences. Mol. Phyl. Evol. 37, 503–510.CrossRefGoogle Scholar
  212. 212.
    Steinfartz S., Glaberman S., Lanterbecq D., Russello M.A., Rosa S., Hanley T C., Marquez C., Snell H.L., Snell H.M., Gentile G., Dell’Olmo G., Powell A.M., Caccone A. 2009. Progressive colonization and restricted gene flow shape island-dependent population structure in Galapagos marine iguanas (Amblyrhynchus cristatus). BMC Evol. Biol. 9, 297–315.PubMedCrossRefGoogle Scholar
  213. 213.
    Poulakakis N., Lymberakis P., Valakos E., Zouros E., Mylonas M. 2005. Phylogenetic relationships and biogeography of Podarcis species from the Balkan Peninsula, by Bayesian and maximum likelihood analyses of mitochondrial DNA sequences. Mol. Phyl. Evol. 37, 845–857.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations