Molecular Biology

, Volume 47, Issue 1, pp 1–11

Methods of searching for markers for serological serum diagnosis of tumors

  • Yu. A. Bukurova
  • G. S. Krasnov
  • I. G. Nikitina
  • V. L. Karpov
  • N. A. Lisitsyn
  • S. F. Beresten
Reviews

Abstract

This review describes the most popular methods of searching for serological markers of tumors that are used in a clinical setting, as well as a comparison of their efficiency.

Keywords

proteomics tumor markers bioinformatics microRNA noncoding RNAs 

Abbreviations

ncRNA

noncoding RNA

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wong S.C., Chan C.M., Ma B.B., et al. 2009. Advanced proteomic technologies for cancer biomarker discovery. Exp. Rev. Proteomics. 6, 123–134.CrossRefGoogle Scholar
  2. 2.
    Garrisi V.M., Abbate I., Quaranta M., et al. 2008. SELDI-TOF serum proteomics and breast cancer: Which perspective? Expert Rev. Proteomics. 5, 779–785.PubMedCrossRefGoogle Scholar
  3. 3.
    Balestrieri M.L., Giovane A., Mancini F.P., et al. 2008. Proteomics and cardiovascular disease: An up-date. Curr. Med. Chem. 15, 555–572.PubMedCrossRefGoogle Scholar
  4. 4.
    Song M.H., Ha J.C., Lee S.M., et al. 2011. Identification of BCP-20 (FBXO39) as a cancer/testis antigen from colon cancer patients by SEREX. Biochem. Biophys. Res. Commun. 408, 195–201.PubMedCrossRefGoogle Scholar
  5. 5.
    Seliger B., Kellner R. 2002. Design of proteome-based studies in combination with serology for the identification of biomarkers and novel targets. Proteomics. 2, 1641–1651.PubMedCrossRefGoogle Scholar
  6. 6.
    Rauch J., Gires O. 2008. SEREX, Proteomex, AMIDA, and beyond: Serological screening technologies for target identification. Proteomics Clin. Appl. 2, 355–371.PubMedCrossRefGoogle Scholar
  7. 7.
  8. 8.
  9. 9.
  10. 10.
  11. 11.
    Lichtenstein P., Holm N.V., Verkasalo P.K., et al. 2000. Environmental and heritable factors in the causation of cancer: Analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343, 78–85.PubMedCrossRefGoogle Scholar
  12. 12.
    Mill J., Petronis A. 2009. Profiling DNA methylation from small amounts of genomic DNA starting material: Efficient sodium bisulfite conversion and subsequent whole-genome amplification. Methods Mol. Biol. 507, 371–381.PubMedCrossRefGoogle Scholar
  13. 13.
    Koenig R., Stegemann H., Francksen H., et al. 1970. Protein subunits in the potato virus X group: Determination of the molecular weights by polyacrylamide electrophoresis. Biochim. Biophys. Acta. 207, 184–189.PubMedCrossRefGoogle Scholar
  14. 14.
    O’Farrell P.H. 1975. High resolution two-dimentional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021.PubMedGoogle Scholar
  15. 15.
    Issaq H.J., Veenstra T.D. 2008. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE): Advances and perspectives. BioTechniques. 44, 697–700.PubMedCrossRefGoogle Scholar
  16. 16.
    Collet B., Guitton N., Saïkali S., et al. 2011. Differential analysis of glioblastoma multiforme proteome by a 2D-DIGE approach. Proteome Sci. 9, 16.PubMedCrossRefGoogle Scholar
  17. 17.
    Hutchens T.W., Yip T. 1993. New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun. Mass Spectrom. 7, 576–580.CrossRefGoogle Scholar
  18. 18.
    Kussmann M., Roepstorff P. 2000. Sample preparation techniques for peptides and proteins analyzed by MALDI-MS. Methods Mol. Biol. 146, 405–424.PubMedGoogle Scholar
  19. 19.
    Caputo E., Moharram R., Martin B.M. 2003. Methods for on-chip protein analysis. Anal. Biochem. 321, 116–124.PubMedCrossRefGoogle Scholar
  20. 20.
    Issaq H.J., Veenstra T.D., Conrads T.P., et al. 2002. The SELDI-TOF MS approach to proteomics: Protein profiling and biomarker identification. Biochem. Biophys. Res. Commun. 292, 587–592.PubMedCrossRefGoogle Scholar
  21. 21.
    Bischoff R., Luider T.M. 2004. Methodological advances in the discovery of protein and peptide disease markers. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 803, 27–40.PubMedCrossRefGoogle Scholar
  22. 22.
    Liu J.Y., Jin L., Zhao M.Y., et al. 2011. New serum biomarkers for detection of tuberculosis using surfaceenhanced laser desorption/ionization time-of-flight mass spectrometry. Clin. Chem. Lab. Med. 49, 1727–1733.PubMedGoogle Scholar
  23. 23.
  24. 24.
    Liggins A.P., Guinn B.A., Banham A.H. 2005. Identification of lymphoma-associated antigens using SEREX. Methods Mol. Med. 115, 109–128.PubMedGoogle Scholar
  25. 25.
    Klade C.S., Voss T., Krystek E., et al. 2001. Identification of tumor antigens in renal cell carcinoma by serological proteome analysis. Proteomics. 1, 890–898.PubMedCrossRefGoogle Scholar
  26. 26.
    Klade C.S. 2002 Proteomics approaches towards antigen discovery and vaccine development. Curr. Opin. Mol. Ther. 4, 216–223.PubMedGoogle Scholar
  27. 27.
    Le Naour F., Hohenkirk L., Grolleau A., et al. 2001. Profiling changes in gene expression during differentiation and maturation of monocyte-derived dendritic cells using both oligonucleotide microarrays and proteomics. J. Biol. Chem. 276, 17920–17931.PubMedCrossRefGoogle Scholar
  28. 28.
    Lichtenfels R., Kellner R., Bukur J., et al. 2002. Heat shock protein expression and anti-heat shock protein reactivity in renal cell carcinoma. Proteomics. 2, 561–570.PubMedCrossRefGoogle Scholar
  29. 29.
    Mann M., Jensen O.N. 2003. Proteomic analysis of post-translational modifications. Nature Biotechnol. 21, 255–261.CrossRefGoogle Scholar
  30. 30.
    Gallego M., Virshup D.M. 2007. Post-translational modifications regulate the ticking of the circadian clock. Nature Rev. Mol. Cell. Biol. 8, 139–148.CrossRefGoogle Scholar
  31. 31.
    Kim K.I., Baek S.H. 2006. SUMOylation code in cancer development and metastasis. Mol. Cells. 22, 247–253.PubMedGoogle Scholar
  32. 32.
    Krueger K.E., Srivastava S. 2006. Posttranslational protein modifications: Current implications for cancer detection, prevention, and therapeutics. Mol. Cell. Proteomics. 5, 1799–1810.PubMedCrossRefGoogle Scholar
  33. 33.
    Gires O., Munz M., Schaffrik M., et al. 2004. Profile identification of disease-associated humoral antigens using AMIDA, a novel proteomics-based technology. Cell. Mol. Life Sci. 61, 1198–1207.PubMedCrossRefGoogle Scholar
  34. 34.
    Rauch J., Ahlemann M., Schaffrik M., et al. 2004. Allogenic antibody-mediated identification of head and neck cancer antigens. Biochem. Biophys. Res. Commun. 323, 156–162.PubMedCrossRefGoogle Scholar
  35. 35.
    Scanlan M.J., Gout I., Gordon C.M., et al. 2001. Humoral immunity to human breast cancer: Antigen definition and quantitative analysis of mRNA expression. Cancer Immun. 1, 4.PubMedGoogle Scholar
  36. 36.
    Scanlan M.J., Welt S., Gordon C.M., et al. 2002. Cancer-related serological recognition of human colon cancer: Identification of potential diagnostic and immunotherapeutic targets. Cancer Res. 62, 4041–4047.PubMedGoogle Scholar
  37. 37.
    Scanlan M.J., Simpson A.J., Old L.J. 2004 The cancer/ testis genes: Review, standardization, and commentary. Cancer Immun. 4, 1.PubMedGoogle Scholar
  38. 38.
  39. 39.
    Rhodes D.R., Kalyana-Sundaram S., Mahavisno V., et al. 2007. Oncomine 3.0: Genes, pathways, and networks in a collection of 18000 cancer gene expression profiles. Neoplasia. 9, 166–180.PubMedCrossRefGoogle Scholar
  40. 40.
    Yang Y., Pospisil P., Iyer L.K., et al. 2008. Integrative genomic data mining for discovery of potential bloodborne biomarkers for early diagnosis of cancer. PLoS ONE. 3, e3661.PubMedCrossRefGoogle Scholar
  41. 41.
  42. 42.
    Adams M.D., Kelley J.M., Gocayne J.D., et al. 1991. Complementary DNA sequencing: Expressed sequence tags and human genome project. Science. 252, 1651–1656.PubMedCrossRefGoogle Scholar
  43. 43.
    Wilcox A.S., Khan A.S., Hopkins J.A., et al. 1991. Use of 3′ untranslated sequences of human cDNAs for rapid chromosome assignment and conversion to STSs: Implications for an expression map of the genome. Nucleic Acids Res. 19, 1837–1843.PubMedCrossRefGoogle Scholar
  44. 44.
    Velculescu V.E., Zhang L., Vogelstein B., et al. 1995. Serial analysis of gene expression. Science. 270, 484–487.PubMedCrossRefGoogle Scholar
  45. 45.
    Yamamoto M., Wakatsuki T., Hada A., et al. 2001. Use of serial analysis of gene expression (SAGE) technology. J. Immunol. Methods. 250, 45–66.PubMedCrossRefGoogle Scholar
  46. 46.
    Ruijter J.M., Van Kampen A.H., Baas F. 2002. Statistical evaluation of SAGE libraries: Consequences for experimental design. Physiol. Genomics. 11, 37–44.PubMedGoogle Scholar
  47. 47.
    Bukurova Yu.A., Khankin S.L., Krasnov G.S., et al. 2010. Estimation of the efficiency of 2D analysis and bioinformatics search in identification of protein markers for colon tumors. Mol. Biol. (Moscow). 44, 334–340.CrossRefGoogle Scholar
  48. 48.
    Saha S., Sparks A.B., Rago C., et al. 2002. Using the transcriptome to annotate the genome. Nature Biotechnol. 20, 508–512.CrossRefGoogle Scholar
  49. 49.
    Morrissy A.S., Morin R.D., Delaney A., et al. 2009. Next-generation tag sequencing for cancer gene expression profiling. Genome Res. 19, 1825–1835.PubMedCrossRefGoogle Scholar
  50. 50.
    Morrissy S., Zhao Y., Delaney A., et al. 2010. Digital gene expression by tag sequencing on the illumina genome analyzer. Curr. Protoc. Hum. Genet. Chapter 11: Unit 11.11.1–36.Google Scholar
  51. 51.
    Lu J., Getz G., Miska E.A., et al. 2005. MicroRNA expression profiles classify human cancers. Nature. 435, 834–838.PubMedCrossRefGoogle Scholar
  52. 52.
    Naqvi A.R., Islam M.N., Choudhury N.R., et al. 2009. The fascinating world of RNA interference. Int. J. Biol. Sci. 5, 97–117.PubMedCrossRefGoogle Scholar
  53. 53.
    Lee S.K., Calin G.A. 2011. Non-coding RNAs and cancer: New paradigms in oncology. Discov. Med. 11, 245–254.PubMedGoogle Scholar
  54. 54.
    Patel D.J., Ma J.B., Yuan Y.R., et al. 2006. Structural biology of RNA silencing and its functional implications. Cold Spring Harbor Symp. Quant. Biol. 71, 81–93.PubMedCrossRefGoogle Scholar
  55. 55.
    Schetter A.J., Leung S.Y., Sohn J.J., et al. 2008. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. J. Am. Med. Accoc. 299, 425–436.CrossRefGoogle Scholar
  56. 56.
    Gibb E.A., Brown C.J., Lam W.L. 2011. The functional role of long non-coding RNA in human carcinomas. Mol. Cancer. 10, 38.PubMedCrossRefGoogle Scholar
  57. 57.
    Guttman M., Garber M., Levin J.Z., et al. 2010. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nature Biotechnol. 28, 503–510.CrossRefGoogle Scholar
  58. 58.
    Panzitt K., Tschernatsch M.M., Guelly C., et al. 2007. Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology. 132, 330–342.PubMedCrossRefGoogle Scholar
  59. 59.
    Castle J.C., Armour C.D., Löwer M., et al. 2010. Digital genome-wide ncRNA expression, including SnoRNAs, across 11 human tissues using polyA-neutral amplification. PLoS ONE. 5, e11779.PubMedCrossRefGoogle Scholar
  60. 60.
    Tariq M.A., Kim H.J., Jejelowo O., et al. 2011. Wholetranscriptome RNAseq analysis from minute amount of total RNA. Nucleic Acids Res. 39, e120.PubMedCrossRefGoogle Scholar
  61. 61.
  62. 62.
    Wang Z., Gerstein M., Snyder M. 2009. RNA-Seq: A revolutionary tool for transcriptomics. Nature Rev. Genet. 10, 57–63.PubMedCrossRefGoogle Scholar
  63. 63.
    Taby R., Issa J.P. 2010. Cancer epigenetics. CA Cancer J. Clin. 60, 376–392.PubMedCrossRefGoogle Scholar
  64. 64.
    Kalimutho M., Del Vecchio Blanco G., Cretella M., et al. 2011. A simplified, non-invasive fecal-based DNA integrity assay and iFOBT for colorectal cancer detection. Int. J. Colorect. Dis. 26, 583–592.CrossRefGoogle Scholar
  65. 65.
    Widschwendter A., Müller H.M., Fiegl H., et al. 2004. DNA methylation in serum and tumors of cervical cancer patients. Clin. Cancer Res. 10, 565–571.PubMedCrossRefGoogle Scholar
  66. 66.
    Wong T.S., Kwong D.L., Sham J.S., et al. 2004. Quantitative plasma hypermethylated DNA markers of undifferentiated nasophryngeal carcinoma. Clin. Cancer Res. 10, 2401–2406.PubMedCrossRefGoogle Scholar
  67. 67.
    Tanaka T., Tanaka M., Tanaka T., et al. 2010. Biomarkers for colorectal cancer. Int. J. Mol. Sci. 11, 3209–3225.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • Yu. A. Bukurova
    • 1
  • G. S. Krasnov
    • 1
  • I. G. Nikitina
    • 1
  • V. L. Karpov
    • 1
  • N. A. Lisitsyn
    • 1
  • S. F. Beresten
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations