Advertisement

Molecular Biology

, Volume 46, Issue 5, pp 717–726 | Cite as

Plastid-encoded protein families specific for narrow taxonomic groups of algae and protozoa

  • O. A. Zverkov
  • A. V. Seliverstov
  • V. A. Lyubetsky
Bioinformatics

Abstract

Protein clustering is useful for refining protein annotations and searching for proteins by their phylogenetic profile. We have performed the clustering of proteins encoded in the plastoms of Rhodophyta, as well as other plastid-containing species related to the Rhodophyta branch. The corresponding database and cluster search according to protein phylogenetic profile are available at http://lab6.iitp.ru/ppc/redline. Plastome-encoded proteins specific for small taxonomic groups of algae and protozoa have been found based on this database, and the search for and analysis of RNA polymerase in the nuclear genomes of Apicomplexa has been performed.

Keywords

algae Apicomplexa plastids Rhodophyta branch protein families protein clusters phylogenetic profile 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lemieux C., Otis C., Turmel M. 2007. A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies. BMC Biol. 5, 1–17.CrossRefGoogle Scholar
  2. 2.
    Imanian B., Pombert J.-F., Keeling P.J. 2010. The complete plastid genomes of the two ‘Dinotoms’ Durinskia baltica and Kryptoperidinium foliaceum. PLoS ONE, 5(5), e10711.PubMedCrossRefGoogle Scholar
  3. 3.
    Balashov Yu.S. 1998. Iksodovye kleshchi: parazity i perenoschiki infektsii (Ixodid Ticks: Parasites and Infection Vectors). St. Petersburg: Nauka.Google Scholar
  4. 4.
    Brayton K.A., Lau A.O.T., Herndon D.R., Hannick L., Kappmeyer L.S., et al. 2007. Genome sequence of Babesia bovis and comparative analysis of Apicomplexan Hemoprotozoa. PLoS Pathogens. 3, e148.CrossRefGoogle Scholar
  5. 5.
    Wilson R.J.M., Rangachari K., Saldanha J.W., Rickman L., Buxton R.S., Eccleston J.F. 2003. Parasite plastids: Maintenance and functions. Phil. Trans. R. Soc. London: Ser. B. 358, 155–164.CrossRefGoogle Scholar
  6. 6.
    Zhu G., Marchewka M.J., Keithly J.S. 2000. Cryptosporidium parvum appears to lack a plastid genome. Microbiology. 146, 315–321.PubMedGoogle Scholar
  7. 7.
    Sadovskaya T.A., Seliverstov A.V. 2009. Analysis of the 5’-leader regions of several plastid genes in protozoa of the phylum Apicomplexa and red algae. Mol. Biol. (Moscow). 43, 552–556.CrossRefGoogle Scholar
  8. 8.
    Seliverstov A.V., Lyubetsky V.A. 2011. Evolution of RNA-polymerases and their promoters in plastids. 50-Year IITP Anniversary Conference, Moscow, Russia, September 15, 2011. Moscow, pp. 58–62.Google Scholar
  9. 9.
    Jeruzalmi D., Steitz T.A. 1998. Structure of T7 RNA polymerase complexed to the transcriptional inhibitor T7 lysozyme. EMBO J. 17, 4101–4113.PubMedCrossRefGoogle Scholar
  10. 10.
    Ma N., McAllister W.T. 2009. In a head-on collision, two RNA polymerases approaching one another on the same DNA may pass by one another. J. Mol. Biol. 391, 808–812.PubMedCrossRefGoogle Scholar
  11. 11.
    Kühn K., Bohne A.-V., Liere K., Weihe A., and Thomas Börner T. 2007. Arabidopsis phage-type RNA polymerases: Accurate in vitro transcription of organellar genes. Plant Cell. 19, 959–971.PubMedCrossRefGoogle Scholar
  12. 12.
    Altenhoff A.M., Dessimoz C. 2009. Phylogenetic and functional assessment of orthologs inference projects and methods. PLoS Comput. Biol. 5: e1000262.PubMedCrossRefGoogle Scholar
  13. 13.
  14. 14.
  15. 15.
  16. 16.
  17. 17.
  18. 18.
  19. 19.
  20. 20.
    Needleman S.B., Wunsch C.D. 1970. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453.PubMedCrossRefGoogle Scholar
  21. 21.
  22. 22.
    Fong A., Archibald J.M. 2008. Evolutionary dynamics of light-independent protochlorophyllide oxidoreductase genes in the secondary plastids of Cryptophyte algae. Eukar. Cell. 7, 550–553.CrossRefGoogle Scholar
  23. 23.
    Zverkov O.A., Seliverstov A.V., Lyubetsky V.A. On an algorithm of protein clustering. Trudy 53-ei nauchnoi konferentsii MFTI. Proc. 53d Conf. Moscow Inst. of Physics and Technology (Moscow, 2010). Moscow: MFTI, 2010, part 1, vol. 1, pp. 118–119.Google Scholar
  24. 24.
    Zverkov O.A., Gorbunov K.Yu., Seliverstov, A.V. Lyubetsky V.A. Protein clustering with accounting for domen architecture. Trudy 54-oi nauchnoi konferentsii MFTI. Proc. 54th Conf. Moscow Inst. of Physics and Technology (Moscow, 2011), Section of Management and Applied Mathematics. Moscow: MFTI, 2011, vol. 2, pp. 88–89.Google Scholar
  25. 25.
    Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.PubMedCrossRefGoogle Scholar
  26. 26.
  27. 27.
    Lommer M., Roy A.-S., Schilhabel M., Schreiber S., Rosenstiel P., LaRoche J. 2010. Recent transfer of an iron-regulated gene from the plastid to the nuclear genome in an oceanic diatom adapted to chronic iron limitation. BMC Genomics. 11, 13.CrossRefGoogle Scholar
  28. 28.
    Tanaka T., Fukuda Y., Yoshino T., Maeda Y., Muto M., Matsumoto M., Mayama S., Matsunaga T. 2011. High-throughput pyrosequencing of the chloroplast genome of a highly neutral-lipid-producing marine pennate diatom, Fistulifera sp. strain JPCC DA0580. Photosynth. Res. 109, 223–229.PubMedCrossRefGoogle Scholar
  29. 29.
  30. 30.
    Lopatovskaya K.V., Seliverstov A.V., Lyubetsky V.A. 2011. NtcA and NtcB regulons in cyanobacteria and Rhodophyta chloroplasts. Mol. Biol. (Moscow). 45, 522–526.CrossRefGoogle Scholar
  31. 31.
    Hagopian J.C., Reis M., Kitajima J.P., Bhattacharya D., de Oliveira M.C. 2004. Comparative analysis of the complete plastid genome sequence of the red alga Gracilaria tenuistipitata var. liui provides insights into the evolution of rhodoplasts and their relationship to other plastids. J. Mol. Evol. 59, 464–477.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • O. A. Zverkov
    • 1
  • A. V. Seliverstov
    • 1
  • V. A. Lyubetsky
    • 1
  1. 1.Kharkevitch Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations