Molecular Biology

, Volume 46, Issue 5, pp 639–650 | Cite as

Oncolytic enteroviruses

  • P. M. Chumakov
  • V. V. Morozova
  • I. V. Babkin
  • I. K. Baikov
  • S. V. Netesov
  • N. V. Tikunova
Reviews

Abstract

The growing body of knowledge concerning the molecular biology of viruses and virus-cell interactions provides possibilities to use viruses as a tool in an effort to treat malignant tumors. As a rule, tumor cells are highly sensitive to viruses, which can be used in cancer therapy. At the same time, the application of viral oncolysis in cancer treatment requires that the highest possible safety be ensured for both the patient and environment. Human enteroviruses are a convenient source for obtaining oncolytic virus strains, since many of them are nonpathogenic for humans or cause mild disease. The current progress in genetic engineering enables the development of attenuated enterovirus variants characterized with high safety and selectivity. This review focuses on the main members of the Enterovirus genus, such as ECHO, coxsackievirus, and vaccine strains of poliovirus as a promising source for the development of oncolytic agents applicable for cancer therapy. We have summarized the data concerning recently developed and tested oncolytic variants of enteroviruses and discusses the perspectives of their application in cancer therapy, as well as problems associated with their improvement and practical use.

Keywords

oncolytic enteroviruses viral cancer therapy Coxsackieviruses Echoviruses Polioviruses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernier J., Hall E.J., Giaccia A. 2004. Radiation oncology: A century of achievements. Nature Rev. Cancer. 4, 737–747.CrossRefGoogle Scholar
  2. 2.
    Farber S., Diamond L.K. 1948. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N. Engl. J. Med. 238, 787–793.PubMedCrossRefGoogle Scholar
  3. 3.
    Pui C.H., Robison L.L., Look A.T. 2008. Acute lymphoblastic leukaemia. Lancet. 371, 1030–1043.PubMedCrossRefGoogle Scholar
  4. 4.
    Bianchini C., Ciorba A., Pelucchi S., Piva R., Pastore A. 2011. Targeted therapy in head and neck cancer. Tumori. 97, 137–141.PubMedGoogle Scholar
  5. 5.
    Litzow M.R. 2011. Pharmacotherapeutic advances in the treatment of acute lymphoblastic leukaemia in adults. Drugs. 71, 415–442.PubMedGoogle Scholar
  6. 6.
    Samant R.S., Shevde L.A. 2011. Recent advances in anti-angiogenic therapy of cancer. Oncotarget. 2, 122–134.PubMedGoogle Scholar
  7. 7.
    Dock G. 1904. The influence of complicating diseases upon leukemia. Am. J. Med. Sci. 127, 563–592.Google Scholar
  8. 8.
    De Pace N.G. 1912. Sulla scomparsa di un enorme cancro vegetante del callo dell’utero senza cura chirurgica. Ginecologia. 9, 82–86.Google Scholar
  9. 9.
    Levaditi C., Nicolau S. 1922. Sur la culture de virus vaccinal dans les neoplasmes epitheliaux. CR Soc. Biol. 85, 928.Google Scholar
  10. 10.
    Levaditi C., Nicolau S. 1922. Affinite du virus herpetique pour les neoplasmes epitheliaux. CR Soc. Biol. 87, 498–500.Google Scholar
  11. 11.
    Levaditi C., Nicolau S. 1923. Vaccine et neoplasmes. Ann. Inst. Pasteur. 37, 443–447.Google Scholar
  12. 12.
    Suskind R.G., Huebner R.J., Rowe W.P., Love R. 1957. Viral agents oncolytic for human tumors in heterologous host; oncolytic effect of Coxsackie B viruses. Proc. Soc. Exp. Biol. Med. 94, 309–318.PubMedGoogle Scholar
  13. 13.
    Bluming A.Z., Ziegler J.L. 1971. Regression of Burkitt’s lymphoma in association with measles infection. Lancet. 2, 105–106.PubMedCrossRefGoogle Scholar
  14. 14.
    Sinkovics J., Horvath J. 1993. New developments in the virus therapy of cancer: A historical review. Intervirology. 36, 193–214.PubMedGoogle Scholar
  15. 15.
    Lindenmann J., Klein P.A. 1967. Viral oncolysis: increased immunogenicity of host cell antigen associated with influenza virus. J. Exp. Med. 126, 93–108.PubMedCrossRefGoogle Scholar
  16. 16.
    Kunin C.M. 1964. Cellular susceptibility to Enteroviruses. Bacteriol. Rev. 28, 382–390.PubMedGoogle Scholar
  17. 17.
    Asada T. 1974. Treatment of human cancer with mumps virus. Cancer. 34, 1907–1928.PubMedCrossRefGoogle Scholar
  18. 18.
    Southam C.M. 1960. Present status of oncolytic virus studies. Trans. NY Acad. Sci. 22, 657–673.CrossRefGoogle Scholar
  19. 19.
    Moore A.E. 1952. Viruses with oncolytic properties and their adaptation to tumors. Ann. NY Acad. Sci. 54, 945–952.PubMedCrossRefGoogle Scholar
  20. 20.
    Moore A.E. 1954. Effects of viruses on tumors. Annu. Rev. Microbiol. 8, 393–410.PubMedCrossRefGoogle Scholar
  21. 21.
    Newman W., Southam C.M. 1954. Virus treatment in advanced cancer A pathological study of fifty-seven cases. Cancer. 7, 106–118.PubMedCrossRefGoogle Scholar
  22. 22.
    Voroshilova M.K., Chumakov M.P., Koroleva G.A., Grachev V.P., Lavrova I.K., Alpatova G.A., Umanskii K.G., Vaganova N.T., Rozenbaum G.I., Chartseva V.F., Rabinovich E.A., Sinyak L.I., Lukina V.A., Chichel’nitskii D.I., 1969. Continued observations on the safety and oncolytic activity of some enterovirus vaccines administered in massive dosage to patients with oncological diseases. In: Virusnyi onkoliz i iskusstvennaya geterogenizatsiya opukholei (Viral Oncolysis and Artificial Heterogenization of Tumors). Riga, p. 69.Google Scholar
  23. 23.
    Kuruppu D., Tanabe K.K. 2005. Viral oncolysis by herpes simplex virus and other viruses. Cancer Biol. Ther. 4, 524–531.PubMedCrossRefGoogle Scholar
  24. 24.
    Everts B., van der Poel H.G. 2005. Replication-selective oncolytic viruses in the treatment of cancer. Cancer Gene Ther. 12, 141–161.PubMedCrossRefGoogle Scholar
  25. 25.
    Power A.T., Bell J.C. 2008. Taming the Trojan horse: Optimizing dynamic carrier cell/oncolytic virus systems for cancer biotherapy. Gene Ther. 15, 772–779.PubMedCrossRefGoogle Scholar
  26. 26.
    Verheije M.H., Rottier J.M. 2012. Retargeting of viruses to generate oncolytic agents. Adv. Virol. ID 798526.Google Scholar
  27. 27.
    Mohr I. 2005. To replicate or not to replicate: Achieving selective oncolytic virus replication in cancer cells through translational control. Oncogene. 24, 7697–7709.PubMedCrossRefGoogle Scholar
  28. 28.
    Dobbelstein M. 2004. Replicating adenoviruses in cancer therapy. Curr. Top. Microbiol. Immunol. 273, 291–334.PubMedGoogle Scholar
  29. 29.
    Voroshilova M.K. 1979. Enterovirusnye infektsii cheloveka (Human Enteroviral Infections). Moscow: Meditsina.Google Scholar
  30. 30.
    Pallansch M., Roos R. 2007. Enteroviruses: Polioviruses, Coxsackieviruses, Echoviruses, and newer Enteroviruses. In: Fields Virology. Eds. Knipe D.M., Howley P.M. Philadelphia: Lippincott Williams & Wilkins, pp. 840–893.Google Scholar
  31. 31.
    Flanegan J.B., Petterson R.F., Ambros V., Hewlett N.J., Baltimore D. 1977. Covalent linkage of a protein to a defined nucleotide sequence at the 5′-terminus of virion and replicative intermediate RNAs of poliovirus. Proc. Natl. Acad. Sci. U. S. A. 74, 961–965.PubMedCrossRefGoogle Scholar
  32. 32.
    Lee Y.F., Nomoto A., Detjen B.M., Wimmer E. 1977. A protein covalently linked to poliovirus genome RNA. Proc. Natl. Acad. Sci. U. S. A. 74, 59–63.PubMedCrossRefGoogle Scholar
  33. 33.
    Duke G.M., Osorio J.E., Palmenberg A.C. 1990. Attenuation of Mengo virus through genetic engineering of the 5′ noncoding poly(C) tract. Nature. 343, 474–476.PubMedCrossRefGoogle Scholar
  34. 34.
    Hahn H., Palmenberg A.C. 1995. Encephalomyocarditis viruses with short poly(C) tracts are more virulent than their mengovirus counterparts. J. Virol. 69, 2697–2699.PubMedGoogle Scholar
  35. 35.
    Todd S., Towner J.S., Brown D.M., Semler B.L. 1997. Replication-competent picornaviruses with complete genomic RNA 3′ noncoding region deletions. J. Virol. 71, 8868–8874.PubMedGoogle Scholar
  36. 36.
    Spector D.H., Baltimore D. 1974. Requirement of 3′-terminal poly(adenylic acid) for the infectivity of poliovirus RNA. Proc. Natl. Acad. Sci. U. S. A. 71, 2983–2987.PubMedCrossRefGoogle Scholar
  37. 37.
    Jarvis T.C., Kirkegaard K. 1992. Poliovirus RNA recombination: Mechanistic studies in the absence of selection. EMBO J. 11, 3135–3145.PubMedGoogle Scholar
  38. 38.
    Summers D.F., Maizel J.V., Jr. 1968. Evidence for large precursor proteins in poliovirus synthesis. Proc. Natl. Acad. Sci. U. S. A. 59, 966–971.PubMedCrossRefGoogle Scholar
  39. 39.
    Ward T., Powell R.M., Pipkin P.A., Evans D.J., Minor P.D., Almond J.W. 1998. Role for beta2-microglobulin in echovirus infection of rhabdomyosarcoma cells. J. Virol. 72, 5360–5365.PubMedGoogle Scholar
  40. 40.
    Shafren D.R. 1998. Viral cell entry induced by crosslinked decay-accelerating factor. J. Virol. 72, 9407–9412.PubMedGoogle Scholar
  41. 41.
    Shafren D.R., Dorahy D.J., Ingham R.A., Burns G.F., Barry R.D. 1997. Coxsackievirus A21 binds to decayaccelerating factor but requires intercellular adhesion molecule 1 for cell entry. J. Virol. 71, 4736–4743.PubMedGoogle Scholar
  42. 42.
    Bergelson J.M., Cunningham J.A., Droguett G., Kurt-Jones E.A., Krithivas A., Hong J.S., Horwitz M.S., Crowell R.L., Finberg R.W. 1997. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science. 275, 1320–1323.PubMedCrossRefGoogle Scholar
  43. 43.
    Carson S.D., Chapman N.N., Tracy S.M. 1997. Purification of the putative Coxsackievirus B receptor from HeLa cells. Biochem. Biophys. Res. Commun. 233, 325–328.PubMedCrossRefGoogle Scholar
  44. 44.
    Tomko R.P., Xu R., Philipson L. 1997. HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc. Natl. Acad. Sci. U. S. A. 94, 3352–3356.PubMedCrossRefGoogle Scholar
  45. 45.
    Mendelsohn C.L., Wimmer E., Racaniello V.R. 1989. Cellular receptor for poliovirus: Molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell. 56, 855–865.PubMedCrossRefGoogle Scholar
  46. 46.
    Jenista J.A., Powell K.R., Menegus M.A. 1984. Epidemiology of neonatal enterovirus infection. J. Pediatr. 104, 685–690.Google Scholar
  47. 47.
    Muir P., Kämmerer U., Korn K., Mulders M.N., Pöyry T., Weissbrich B., Kandolf R., Cleator G.M., van Loon A.M. 1998. Molecular typing of enteroviruses: Current status and future requirements. The European Union concerted action on virus meningitis and encephalitis. Clin. Microbiol. Rev. 11, 202–227.PubMedGoogle Scholar
  48. 48.
    Lashkevich V.A., Koroleva G.A., Lukashev A.N., Denisova E.V., Katargina L.A. 2004. Enterovirus uveitis. Rev. Med. Virol. 14, 241–254.PubMedCrossRefGoogle Scholar
  49. 49.
    Lukashev A.N., Lashkevich V.A., Koroleva G.A., Ilonen J., Karganova G.G., Reznik V.I., Hinkkanen A.E. 2003. Molecular epidemiology of enteroviruses causing uveitis and multisystem hemorrhagic disease of infants. Virology. 307, 45–53.PubMedCrossRefGoogle Scholar
  50. 50.
    el-Sageyer M.M., Szendröi A., Hütter E., Uj M., Szücs G., Mezey I., Tóth I., Kátai A., Kapiller Z., Páll G., Petrás G., Szalay E., Mihály I., Gourova S., Berencsi G. 1998. Characterisation of an echovirus type 11’ (prime) epidemic strain causing haemorrhagic syndrome in newborn babies in Hungary. Acta Virol. 42, 157–166.PubMedGoogle Scholar
  51. 51.
    Rabkin C.S., Telzak E.E., Ho M.S., Goldstein J., Bolton Y., Pallansch M., Anderson L., Kilchevsky E., Solomon S., Martone W.J. 1988. Outbreak of echovirus 11 infection in hospitalized neonates. Pediatr. Infect. Dis. J. 7, 186–190.PubMedGoogle Scholar
  52. 52.
    Voroshilova M.K. 1989. Potential use of nonpathogenic enteroviruses for control of human disease. Prog. Med. Virol. 36, 191–202.PubMedGoogle Scholar
  53. 53.
    Voroshilova M.K. 1988. Virological and immunological aspects of administration of live enteroviral vaccines in oncological diseases. In: Poleznye dlya ogranizma nepatogennye shtammy enterovirusov: profilakticheskoe i lechebnoe ikh primenenie (Useful Nonpathogenic Enterovirus Strains: Preventive and Therapeutic Applications). Moscow: Meditsina, pp. 24–29.Google Scholar
  54. 54.
    Voroshilova M.K. 1977. Evolution of enteroviral infections. Vestn. Akad. Med. Nauk SSSR. 42–50.Google Scholar
  55. 55.
    Au G.G., Beagley L.G., Haley E.S., Barry R.D., Shafren D.R. 2011. Oncolysis of malignant human melanoma tumors by Coxsackieviruses A13, A15 and A18. Virol. J. 8, 22.PubMedCrossRefGoogle Scholar
  56. 56.
    Taylor M.W., Cordell B., Souhrada M., Prather S. 1971. Viruses as an aid to cancer therapy: Regression of solid and ascites tumors in rodents after treatment with bovine enterovirus. Proc. Natl. Acad. Sci. U. S. A. 68, 836–840.PubMedCrossRefGoogle Scholar
  57. 57.
    Berry L.J., Au G.G., Barry R.D., Shafren D.R. 2008. Potent oncolytic activity of human enteroviruses against human prostate cancer. Prostate. 68, 577–587.PubMedCrossRefGoogle Scholar
  58. 58.
    Haley E.S., Au G.G., Carlton B.R., Barry R.D., Shafren D.R. 2009. Regional administration of oncolytic echovirus 1 as a novel therapy for the peritoneal dissemination of gastric cancer. J. Mol. Med. 87, 385–399.PubMedCrossRefGoogle Scholar
  59. 59.
    Muceniece A.J. 1978. Analysis of sensitivity of human melanomas to enteroviruses adaptred to these tumors. In: Virusy v terapii opukholei (Viruses in Antitumor Therapy), Riga: Zinatne, pp. 175–189.Google Scholar
  60. 60.
    Dobrikova E.Y., Broadt T., Poiley-Nelson J., Yang X., Soman G., Giardina S., Harris R., Gromeier M. 2008. Recombinant oncolytic poliovirus eliminates glioma in vivo without genetic adaptation to a pathogenic phenotype. Mol. Ther. 16, 1865–1872.PubMedCrossRefGoogle Scholar
  61. 61.
    Gromeier M., Lachmann S., Rosenfeld M.R., Gutin P.H., Wimmer E. 2000. Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc. Natl. Acad. Sci. U. S. A. 97, 6803–6808.PubMedCrossRefGoogle Scholar
  62. 62.
    Toyoda H., Ido M., Hayashi T., Gabazza E.C., Suzuki K., Kisenge R.R., Kang J., Hori H., Komada Y. 2004. Experimental treatment of human neuroblastoma using live-attenuated poliovirus. Int. J. Oncol. 24, 49–58.PubMedGoogle Scholar
  63. 63.
    Toyoda H., Wimmer E., Cello J. 2011. Oncolytic poliovirus therapy and immunization with poliovirusinfected cell lysate induces potent antitumor immunity against neuroblastoma in vivo. Int. J. Oncol. 38, 81–87.PubMedGoogle Scholar
  64. 64.
    Au G.G., Lincz L.F., Enno A., Shafren D.R. 2007. Oncolytic Coxsackievirus A21 as a novel therapy for multiple myeloma. Br. J. Haematol. 137, 133–141.PubMedCrossRefGoogle Scholar
  65. 65.
    Au G.G., Lindberg A.M., Barry R.D., Shafren D.R. 2005. Oncolysis of vascular malignant human melanoma tumors by Coxsackievirus A21. Int. J. Oncol. 26, 1471–1476.PubMedGoogle Scholar
  66. 66.
    Skelding K.A., Barry R.D., Shafren D.R. 2009. Systemic targeting of metastatic human breast tumor xenografts by Coxsackievirus A21. Breast Cancer Res. Treat. 113, 21–30.PubMedCrossRefGoogle Scholar
  67. 67.
    Chumakov M.P., Voroshilova M.K., Antsupova A.S., Boiko V.M., Blinova M.I., Priimyagi L.S., Rodin V.I., Seibil’ V.B., Sinyak K.M., Smorodintsev A.A., Stepanchuk V.A., Terekhov S.N., Trofimova L.I., Chumakov P.M. 1992. Live enteroviral vaccines for urgent preventive therapy against respiratory diseases during autumn-winter epidemics of influenza and acute respiratory diseases. Zh. Mikrobiol. Epidemiol. Infekts. Dis. 37–40.Google Scholar
  68. 68.
    Voroshilova M.K., Tol’skaya E.A., Koroleva G.A., Chumakov K.M., Chumakov, P.M. 1970. Studies on biological and morphological properties of viruses ECHO-1 and ECHO-12. In: Enterovirusnye infektsii (Enteroviral Infections). Tr. Inst. Poliom. Virus. Entsef. Akad. Med. Nauk SSSR. Moscow, pp. 269–274.Google Scholar
  69. 69.
    Koroleva G.A., Voroshilova M.K., Grachev V.P. 1969. Biological properties of enteroviral vaccine strains ZhEV-4, ZhEV-7, ZhEV11, and ZhEV-13. Materialy 16 nauchnoi sessii instituta poliomielita i virusnykh entsefalitov (Proc. 16th Sci. Session of the Institute of Poliomyelitis and Viral Encephalitides), Moscow, p. 185.Google Scholar
  70. 70.
    Chumakov M.P., Voroshilova M.K., Boiko V.M. 1973. On the results of large-scale controlled trials for epidemiological efficiency of live enterovirus vaccines for urgent preventive treatment against influenza and viral acute respiratory diseases. Tr. Inst. Poliom. Virus. Entsef. Akad. Med. Nauk SSSR. Moscow, pp. 19–28.Google Scholar
  71. 71.
    Voroshilova M.K., Baganova N.T. 1969. Experience in treating patients with gastrointestinal tumors by live enterovirus vaccines. In: Virusnyi onkoliz i iskusstvennaya geterogenizatsiya opukholei (Viral Oncolysis and Artificial Heterogenization of Tumors). Riga, pp. 23–26Google Scholar
  72. 72.
    Tsypkin L.B., Voroshilova M.K., Goryunova A.G., Lavrova I.K., Koroleva G.A. 1976. The morphology of tumors of the human gastrointestinal tract in shortterm organ culture and the reaction of these tumors to infection with poliovirus. Cancer. 38, 1796–1806.PubMedCrossRefGoogle Scholar
  73. 73.
    Voroshilova M.K., Goryunova A.G., Gorbachkova E.A., Chumakov P.M., Oganyan G.R., Kodkind G.H. 1977. Studies on cellular immunity of oncological patients in the course of asymptomatic enteroviral infection. In: Virusnyi onkoliz i iskusstvennaya geterogenizatsiya opukholei (Viral Oncolysis and Artificial Heterogenization of Tumors). Riga, pp. 17–19.Google Scholar
  74. 74.
    Voroshilova M.K., Magazanik S.S., Chumakov P.M., 1980. Useful human viruses. In: Aktual’nye voprosy epidemiologii, mikrobiologii i infektsionnykh zabolevanii (Current Problems of Epidemiology, Microbiology, and Infectious Diseases), Tashkent: Meditsina, pp. 227–229.Google Scholar
  75. 75.
    Muceniece A.J. 1972. Onkotropizm virusov i problema viroterapii zlokachestvennykh opukholei (Oncotropism of Viruses and the Problem of Viral Therapy against Malignant Tumors). Riga: Zinatne.Google Scholar
  76. 76.
    Muceniece A.J., Bumbieris J.V. 1982. Transplantation antigens and their changes in carcinogenesis and viral infection. In: Virusnyi onkoliz i iskusstvennaya geterogenizatsiya opukholei (Viral Oncolysis and Artificial Heterogenization of Tumors). Riga, pp. 217–234.Google Scholar
  77. 77.
    Priedite I.J., Garklava R.R., Muceniece A.J. 1971. Treatment of patients with gastric cancer after palliative surgery. Materialy III konferentsii onkologov ESSR, LitSSR i LatvSSR (Proc. III Conf. of Estonian, Lithuanian, and Latvian Oncologists), Riga, p. 77.Google Scholar
  78. 78.
    Shafren D.R., Sylvester D., Johansson E.S., Campbell I.G., Barry R.D. 2005. Oncolysis of human ovarian cancers by echovirus type 1. Int. J. Cancer. 115, 320–328.PubMedCrossRefGoogle Scholar
  79. 79.
    Bergelson J.M., Shepley M.P., Chan B.M., Hemler M.E., Finberg R.W. 1992. Identification of the integrin VLA-2 as a receptor for echovirus 1. Science. 255, 1718–1720.PubMedCrossRefGoogle Scholar
  80. 80.
    King S.L., Cunningham J.A., Finberg R.W., Bergelson J.M. 1995. Echovirus 1 interaction with the isolated VLA-2 I domain. J. Virol. 69, 3237–3239.PubMedGoogle Scholar
  81. 81.
    Moser T.L., Pizzo S.V., Bafetti L.M., Fishman D.A., Stack M.S. 1996. Evidence for preferential adhesion of ovarian epithelial carcinoma cells to type I collagen mediated by the alpha2beta1 integrin. Int. J. Cancer. 67, 695–701.PubMedCrossRefGoogle Scholar
  82. 82.
    Bartolazzi A., Kaczmarek J., Nicolo G., Risso A.M., Tarone G., Rossino P., Defilippi P., Castellani P. 1993. Localization of the alpha 3 beta 1 integrin in some common epithelial tumors of the ovary and in normal equivalents. Anticancer Res. 13, 1–11.PubMedGoogle Scholar
  83. 83.
    Buczek-Thomas J.A., Chen N., Hasan T. 1998. Integrin-mediated adhesion and signalling in ovarian cancer cells. Cell Signal. 10, 55–63.PubMedCrossRefGoogle Scholar
  84. 84.
    Cannistra S.A., Ottensmeier C., Niloff J., Orta B., DiCarlo J. 1995. Expression and function of beta 1 and alpha v beta 3 integrins in ovarian cancer. Gynecol. Oncol. 58, 216–225.PubMedCrossRefGoogle Scholar
  85. 85.
    Koike N., Todoroki T., Komano H., Shimokama T., Ban S., Ohno T., Fukao K., Watanabe T. 1997. Invasive potentials of gastric carcinoma cell lines: role of alpha 2 and alpha 6 integrins in invasion. J. Cancer Res. Clin. Oncol. 123, 310–316.PubMedGoogle Scholar
  86. 86.
    Jokinen J., White D.J., Salmela M., Huhtala M., Kapyla J., Sipila K., Puranen J.S., Nissinen L., Kankaanpaa P., Marjomaki V., Hyypia T., Johnson M.S., Heino J. 2010. Molecular mechanism of alpha2beta1 integrin interaction with human echovirus 1. EMBO J. 29, 196–208.PubMedCrossRefGoogle Scholar
  87. 87.
    Bianco A., Whiteman S.C., Sethi S.K., Allen J.T., Knight R.A., Spiteri M.A. 2000. Expression of intercellular adhesion molecule-1 (ICAM-1) in nasal epithelial cells of atopic subjects: A mechanism for increased rhinovirus infection? Clin. Exp. Immunol. 121, 339–345.PubMedCrossRefGoogle Scholar
  88. 88.
    Lublin D.M., Atkinson J.P. 1989. Decay-accelerating factor: Biochemistry, molecular biology, and function. Annu. Rev. Immunol. 7, 35–58.PubMedCrossRefGoogle Scholar
  89. 89.
    Rosette C., Roth R.B., Oeth P., Braun A., Kammerer S., Ekblom J., Denissenko M.F. 2005. Role of ICAM1 in invasion of human breast cancer cells. Carcinogenesis. 26, 943–950.PubMedCrossRefGoogle Scholar
  90. 90.
    Shafren D.R., Au G.G., Nguyen T., Newcombe N.G., Haley E.S., Beagley L., Johansson E.S., Hersey P., Barry R.D. 2004. Systemic therapy of malignant human melanoma tumors by a common cold-producing enterovirus, coxsackievirus a21. Clin. Cancer Res. 10, 53–60.PubMedCrossRefGoogle Scholar
  91. 91.
    Skelding K.A., Barry R.D., Shafren D.R. 2010. Enhanced oncolysis mediated by Coxsackievirus A21 in combination with doxorubicin hydrochloride. Invest. New Drugs. 21, 21.Google Scholar
  92. 92.
    Wodarz D. 2001. Viruses as antitumor weapons: Defining conditions for tumor remission. Cancer Res. 61, 3501–3507.PubMedGoogle Scholar
  93. 93.
    Mueller S., Wimmer E., Cello J. 2005. Poliovirus and poliomyelitis: A tale of guts, brains, and an accidental event. Virus Res. 111, 175–193.PubMedCrossRefGoogle Scholar
  94. 94.
    Dobrikova E., Florez P., Bradrick S., Gromeier M. 2003. Activity of a type 1 picornavirus internal ribosomal entry site is determined by sequences within the 3′ nontranslated region. Proc. Natl. Acad. Sci. U. S. A. 100, 15125–15130.PubMedCrossRefGoogle Scholar
  95. 95.
    Toyoda H., Yin J., Mueller S., Wimmer E., Cello J. 2007. Oncolytic treatment and cure of neuroblastoma by a novel attenuated poliovirus in a novel poliovirussusceptible animal model. Cancer Res. 67, 2857–2864.PubMedCrossRefGoogle Scholar
  96. 96.
    Gromeier M., Solecki D., Patel D.D., Wimmer E. 2000. Expression of the human poliovirus receptor/CD155 gene during development of the central nervous system: implications for the pathogenesis of poliomyelitis. Virology. 273, 248–257.PubMedCrossRefGoogle Scholar
  97. 97.
    Solecki D., Bernhardt G., Lipp M., Wimmer E. 2000. Identification of a nuclear respiratory factor-1 binding site within the core promoter of the human polio virus receptor/CD155 gene. J. Biol. Chem. 275, 12453–12462.PubMedCrossRefGoogle Scholar
  98. 98.
    Solecki D., Wimmer E., Lipp M., Bernhardt G. 1999. Identification and characterization of the cis-acting elements of the human CD155 gene core promoter. J. Biol. Chem. 274, 1791–1800.PubMedCrossRefGoogle Scholar
  99. 99.
    Solecki D.J., Gromeier M., Mueller S., Bernhardt G., Wimmer E. 2002. Expression of the human poliovirus receptor/CD155 gene is activated by sonic hedgehog. J. Biol. Chem. 277, 25697–25702.PubMedCrossRefGoogle Scholar
  100. 100.
    Ochiai H., Moore S.A., Archer G.E., Okamura T., Chewning T.A., Marks J.R., Sampson J.H., Gromeier M. 2004. Treatment of intracerebral neoplasia and neoplastic meningitis with regional delivery of oncolytic recombinant poliovirus. Clin. Cancer Res. 10, 4831–4838.PubMedCrossRefGoogle Scholar
  101. 101.
    Ansardi D.C., Porter D.C., Anderson M.J., Morrow C.D. 1996. Poliovirus assembly and encapsidation of genomic RNA. Adv. Virus Res. 46, 1–68.PubMedCrossRefGoogle Scholar
  102. 102.
    Ansardi D.C., Porter D.C., Jackson C.A., Gillespie G.Y., Morrow C.D. 2001. RNA replicons derived from poliovirus are directly oncolytic for human tumor cells of diverse origins. Cancer Res. 61, 8470–8479.PubMedGoogle Scholar
  103. 103.
    Porter D.C., Ansardi D.C., Morrow C.D. 1995. Encapsidation of poliovirus replicons encoding the complete human immunodeficiency virus type 1 gag gene by using a complementation system which provides the P1 capsid protein in trans. J. Virol. 69, 1548–1555.PubMedGoogle Scholar
  104. 104.
    Porter D.C., Melsen L.R., Compans R.W., Morrow C.D. 1996. Release of virus-like particles from cells infected with poliovirus replicons which express human immunodeficiency virus type 1 Gag. J. Virol. 70, 2643–2649.PubMedGoogle Scholar
  105. 105.
    Solecki D., Schwarz S., Wimmer E., Lipp M., Bernhardt G. 1997. The promoters for human and monkey poliovirus receptors: Requirements for basic and cell type-specific activity. J. Biol. Chem. 272, 5579–5586.PubMedCrossRefGoogle Scholar
  106. 106.
    Goetz C., Gromeier M. 2010. Preparing an oncolytic poliovirus recombinant for clinical application against glioblastoma multiforme. Cytokine Growth Factor Rev. 21, 197–203.PubMedCrossRefGoogle Scholar
  107. 107.
    Merrill M.K., Dobrikova E.Y., Gromeier M. 2006. Cell-type-specific repression of internal ribosome entry site activity by double-stranded RNA-binding protein 76. J. Virol. 80, 3147–3156.PubMedCrossRefGoogle Scholar
  108. 108.
    Merrill M.K., Gromeier M. 2006. The doublestranded RNA binding protein 76: NF45 heterodimer inhibits translation initiation at the rhinovirus type 2 internal ribosome entry site. J. Virol. 80, 6936–6942.PubMedCrossRefGoogle Scholar
  109. 109.
    Ochiai H., Campbell S.A., Archer G.E., Chewning T.A., Dragunsky E., Ivanov A., Gromeier M., Sampson J.H. 2006. Targeted therapy for glioblastoma multiforme neoplastic meningitis with intrathecal delivery of an oncolytic recombinant poliovirus. Clin. Cancer Res. 12, 1349–1354.PubMedCrossRefGoogle Scholar
  110. 110.
    De Jesus N., Franco D., Paul A., Wimmer E., Cello J. 2005. Mutation of a single conserved nucleotide between the cloverleaf and internal ribosome entry site attenuates poliovirus neurovirulence. J. Virol. 79, 14235–14243.PubMedCrossRefGoogle Scholar
  111. 111.
    Paul A.V. 2002. Possible unifying mechanism of picornavirus genome replication. In: Molecular Biology of Picornaviruses. Eds. Semler B.L., Wimmer E. Washington, DC: ASM Press, pp. 227–246.Google Scholar
  112. 112.
    Yin J., Paul A.V., Wimmer E., Rieder E. 2003. Functional dissection of a poliovirus cis-acting replication element [PV-cre(2C)]: Analysis of single- and dualcre viral genomes and proteins that bind specifically to PV-cre RNA. J. Virol. 77, 5152–5166.PubMedCrossRefGoogle Scholar
  113. 113.
    Coffey M.C., Strong J.E., Forsyth P.A., Lee P.W. 1998. Reovirus therapy of tumors with activated Ras pathway. Science. 282, 1332–1334.PubMedCrossRefGoogle Scholar
  114. 114.
    Nakamura H., Kasuya H., Mullen J.T., Yoon S.S., Pawlik T.M., Chandrasekhar S., Donahue J.M., Chiocca E.A., Chung R.Y., Tanabe K.K. 2002. Regulation of herpes simplex virus gamma(1)34.5 expression and oncolysis of diffuse liver metastases by Myb34.5. J. Clin. Invest. 109, 871–882.PubMedGoogle Scholar
  115. 115.
    Nemunaitis J., Ganly I., Khuri F., Arseneau J., Kuhn J., McCarty T., Landers S., Maples P., Romel L., Randlev B., Reid T., Kaye S., Kirn D. 2000. Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: A phase II trial. Cancer Res. 60, 6359–6366.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • P. M. Chumakov
    • 1
    • 2
    • 3
  • V. V. Morozova
    • 1
    • 4
  • I. V. Babkin
    • 1
    • 4
  • I. K. Baikov
    • 1
    • 4
  • S. V. Netesov
    • 1
    • 5
  • N. V. Tikunova
    • 1
    • 4
  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  3. 3.Lerner Research InstituteCleveland Clinic FoundationClevelandUSA
  4. 4.Institute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  5. 5.Vector State Research Center of Virology and BiotechnologyKoltsovo, Novosibirsk regionRussia

Personalised recommendations