Molecular Biology

, Volume 46, Issue 4, pp 569–578 | Cite as

Differential regulation of MicroRNA expression in irradiated and bystander cells

Molecular Biology of the Cell

Abstract

The ionizing radiation (IR) induces a variety of biological effects in irradiated cells. Additionally, the irradiated cells communicate with unirradiated cells and induce changes in them through a phenomenon termed as the bystander effect. The nature of the bystander effect signal and how it impacts unirradiated cells remains to be discovered. Examination of molecular changes in bystander cells due to signals from irradiated cells could lead to the identification of the pathways underlying the bystander effect. To gain insight into the molecular pathways affected by the transmission of signal from irradiated cells to bystander cells, we monitored the microRNA (miRNA) transcriptional changes. miRNAs control gene expression at the posttranscriptional level. In previous studies from our laboratory the modulation of miRNA in irradiated human cells were identified. In the present work human lymphoblasts TK6 cells in a medium exchanged bystander effect model system were used to analyze miRNA expression alterations by employing the real time RT-PCR technology. The relative expression of several miRNAs involved in RAS, c-MYC and BCL2 gene regulation were examined. The let-7 family of miRNAs was upregulated in irradiated cells but most of these miRNAs remained repressed in bystander cells. The miR-17-3p, miR-19b, and miR-18a were upregulated in irradiated cells but were repressed in the bystander cells. The miR-17-5p, miR-142-3p, rniR-142-5p, and miR-19a were induced only for a short time in bystander cells. The miR-15a, miR-16, miR-143, miR-145, miR-155, and miR21 were upregulated in irradiated TK6 cells. While the expression of miR-15a, miR-16, miR-155, and miR-21 was repressed, the miR-143 and miR-145 expression was induced in bystander cells. These results indicate the involvement of miRNA modulation in irradiated and bystander cells.

Keywords

micro-RNA non-protein coding RNA TK6 cells radiation-induced bystander effect 

Abbreviations

IR

ionizing radiation

ROS

reactive oxygen species

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chaudhry M.A. 2006. Bystander effect: Biological endpoints and microarray analysis. Mutat. Res. 597, 98–112.PubMedCrossRefGoogle Scholar
  2. 2.
    Wright E.G. 2010. Manifestations and mechanisms of non-targeted effects of ionizing radiation. Mutat. Res. 687, 28–33.PubMedCrossRefGoogle Scholar
  3. 3.
    Goodhead D.T. 2010. New radiobiological, radiation risk and radiation protection paradigms. Mutat. Res. 687, 13–16.PubMedCrossRefGoogle Scholar
  4. 4.
    Nagasawa H., Little J.B. 1992. Induction of sister chromatid exchanges by extremely low doses of alpha-particles. Cancer Res. 52, 6394–6396.PubMedGoogle Scholar
  5. 5.
    Mothersill C., Seymour C. 1997. Medium from irradiated human epithelial cells but not human fibroblasts reduces the clonogenic survival of unirradiated cells. Int. J. Radiat. Biol. 71, 421–427.PubMedCrossRefGoogle Scholar
  6. 6.
    Nagasawa H., Little J.B. 1999. Unexpected sensitivity to the induction of mutations by very low doses of alpha-particle radiation: Evidence for a bystander effect. Radiat. Res. 152, 552–557.PubMedCrossRefGoogle Scholar
  7. 7.
    Watson G.E., Lorimore S.A., Macdonald D.A., Wright E.G. 2000. Chromosomal instability in unirradiated cells induced in vivo by a bystander effect of ionizing radiation. Cancer Res. 60, 5608–5611.PubMedGoogle Scholar
  8. 8.
    Nagasawa H., Little J. 2002. Bystander effect for chromosomal aberrations induced in wild-type and repair deficient CHO cells by low fluences of alpha particles. Mutat. Res. 508, 121.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang Y., Zhou J., Held K.D., Redmond R.W., Prise K.M., Liber H.L. 2008. Deficiencies of double-strand break repair factors and effects on mutagenesis in directly gamma-irradiated and medium-mediated bystander human lymphoblastoid cells. Radiat. Res. 169, 197–206.PubMedCrossRefGoogle Scholar
  10. 10.
    Gorman S., Fox E., O’donoghue D., Sheahan K., Hyland J., Mulcahy H., Loeb L.A., O’sullivan J. 2010. Mitochondrial mutagenesis induced by tumor-specific radiation bystander effects. J. Mol. Med. 88, 701–708.PubMedCrossRefGoogle Scholar
  11. 11.
    Azzam E.I., de Toledo S.M., Gooding T., Little J.B. 1998. Intercellular communication is involved in the bystander regulation of gene expression in human cells exposed to very low fluences of alpha particles. Radiat. Res. 150, 497–504.PubMedCrossRefGoogle Scholar
  12. 12.
    Little J.B., Azzam E.I., de Toledo S.M., Nagasawa H. 2002. Bystander effects: Intercellular transmission of radiation damage signals. Radiat. Prot. Dosimetry. 99, 159–162.PubMedCrossRefGoogle Scholar
  13. 13.
    Asur R., Balasubramaniam M., Marples B., Thomas R.A., Tucker J.D. 2010. Bystander effects induced by chemicals and ionizing radiation: Evaluation of changes in gene expression of downstream MAPK targets. Mutagenesis. 25, 271–279.PubMedCrossRefGoogle Scholar
  14. 14.
    Azzam E.I., de Toledo S.M., Spitz D.R., Little J.B. 2002. Oxidative metabolism modulates signal transduction and micronucleus formation in bystander cells from alpha-particleirradiated normal human fibroblast cultures. Cancer Res. 62, 5436–5442.PubMedGoogle Scholar
  15. 15.
    Sowa M.B., Goetz W., Baulch J.E., Pyles D.N., Dziegielewski J., Yovino S., Snyder A.R., de Toledo S.M., Azzam E.I., Morgan W.F. 2010. Lack of evidence for low-LET radiation induced bystander response in normal human fibroblasts and colon carcinoma cells. Int. J. Radiat. Biol. 86, 102–113.PubMedCrossRefGoogle Scholar
  16. 16.
    Yang H., Asaad N., Held K.D. 2005. Medium-mediated intercellular communication is involved in bystander responses of X-ray-irradiated normal human fibroblasts. Oncogene. 24, 2096–2103.PubMedCrossRefGoogle Scholar
  17. 17.
    Azzam E.I., de Toledo S.M., Little J.B. 2001. Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha -particle irradiated to nonirradiated cells. Proc. Natl. Acad. Sci. U. S. A. 98, 473–478.PubMedGoogle Scholar
  18. 18.
    Seymour C.B., Mothersill C. 2000. Relative contribution of bystander and targeted cell killing to the low-dose region of the radiation dose-response curve. Radiat. Res. 153, 508–511.PubMedCrossRefGoogle Scholar
  19. 19.
    Prise K.M., Belyakov O.V., Folkard M., Michael B.D. 1998. Studies of bystander effects in human fibroblasts using a charged particle microbeam. Int. J. Radiat. Biol. 74, 793–798.PubMedCrossRefGoogle Scholar
  20. 20.
    Hanot M., Hoarau J., Carriere M., Angulo J.F., Khodja H. 2009. Membrane-dependent bystander effect contributes to amplification of the response to alpha-particle irradiation in targeted and nontargeted cells. Int. J. Radiat. Oncol. Biol. Phys. 75, 1247–1253.PubMedCrossRefGoogle Scholar
  21. 21.
    Law Y.L., Wong T.P., Yu K.N. 2010. Influence of catechins on bystander responses in CHO cells induced by alpha-particle irradiation. Appl. Radiat. Isot. 68, 726–729.PubMedCrossRefGoogle Scholar
  22. 22.
    Fabian M.R., Sonenberg N., Filipowicz W. 2010. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351–379.PubMedCrossRefGoogle Scholar
  23. 23.
    Yekta S., Shih I.H., Bartel D.P. 2004. MicroRNA-directed cleavage of HOXB8 mRNA. Science. 304, 594–596.PubMedCrossRefGoogle Scholar
  24. 24.
    Kai Z.S., Pasquinelli A.E. 2010. MicroRNA assassins: Factors that regulate the disappearance of miRNAs. Nature Struct. Mol. Biol. 17, 5–10.CrossRefGoogle Scholar
  25. 25.
    Pillai R.S., Bhattacharyya S.N., Artus C.G., Zoller T., Cougot N., Basyuk E., Bertrand E., Filipowicz W. 2005. Inhibition of translational initiation by Let-7 microRNA in human cells. Science. 309, 1573–1576.PubMedCrossRefGoogle Scholar
  26. 26.
    Lim L.P., Lau N.C., Garrett-Engele P., Grimson A., Schelter J.M., Castle J., Bartel D.P., Linsley P.S., Johnson J.M. 2005. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 433, 769–773.PubMedCrossRefGoogle Scholar
  27. 27.
    Chekulaeva M., Filipowicz W. 2009. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr. Opin. Cell Biol. 21, 452–460.PubMedCrossRefGoogle Scholar
  28. 28.
    John B., Enright A.J., Aravin A., Tuschl T., Sander C., Marks D.S. 2004. Human microRNA targets. PLoS Biol. 2, e363.PubMedCrossRefGoogle Scholar
  29. 29.
    Chaudhry M.A., Kreger B., Omaruddin R.A. 2010. Transcriptional modulation of micro-RNA in human cells differing in radiation sensitivity. Int. J. Radiat. Biol. 86, 569–583.PubMedCrossRefGoogle Scholar
  30. 30.
    Livak K.J., Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25, 402–408.PubMedCrossRefGoogle Scholar
  31. 31.
    Abdullaev S.A., Antipova V.N., Gaziev A.I. 2009. Extracellular mutant mitochondrial DNA content is sharply elevated in the blood plasma of irradiated mice. Mol. Biol. (Moscow). 43, 990–996.CrossRefGoogle Scholar
  32. 32.
    Chaudhry M.A. 2009. Real-time PCR analysis of micro-RNA expression in ionizing radiation-treated cells. Cancer Biother. Radiopharm. 24, 49–56.PubMedCrossRefGoogle Scholar
  33. 33.
    Chaudhry M.A., Sachdeva H., Omaruddin R.A. 2010. Radiation-induced micro-RNA modulation in glioblastoma cells differing in DNA-repair pathways. DNA Cell Biol. 29, 553–561.PubMedCrossRefGoogle Scholar
  34. 34.
    Johnson S.M., Grosshans H., Shingara J., Byrom M., Jarvis R., Cheng A., Labourier E., Reinert K.L., Brown D., Slack F.J. 2005. RAS is regulated by the let-7 microRNA family. Cell. 120, 635–647.PubMedCrossRefGoogle Scholar
  35. 35.
    Goodsell D.S. 1999. The molecular perspective: The RAS oncogene. Oncologist. 4, 263–264.PubMedGoogle Scholar
  36. 36.
    Weidhaas J.B., Babar I., Nallur S.M., Trang P., Roush S., Boehm M., Gillespie E., Slack F.J. 2007. MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res. 67, 11111–11116.PubMedCrossRefGoogle Scholar
  37. 37.
    Xi Y., Edwards J.R., Ju J. 2007. Investigation of miRNA biology by bioinformatic tools and impact of miRNAs in colorectal cancer-regulatory relationship of c-Myc and p53 with miRNAs. Cancer Inform. 3, 245–253.PubMedGoogle Scholar
  38. 38.
    He L., Thomson J.M., Hemann M.T., Hernando-Monge E., Mu D., Goodson S., Powers S., Cordon-Cardo C., Lowe S.W., Hannon G.J., Hammond S.M. 2005. A microRNA polycistron as a potential human oncogene. Nature. 435, 828–833.PubMedCrossRefGoogle Scholar
  39. 39.
    Fontana L., Fiori M.E., Albini S., Cifaldi L., Giovinazzi S., Forloni M., Boldrini R., Donfrancesco A., Federici V., Giacomini P., Peschle C., Fruci D. 2008. Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS One. 3, e2236.PubMedCrossRefGoogle Scholar
  40. 40.
    Iwakawa M., Hamada N., Imadome K., Funayama T., Sakashita T., Kobayashi Y., Imai T. 2008. Expression profiles are different in carbon ion-irradiated normal human fibroblasts and their bystander cells. Mutat. Res. 642, 57–67.PubMedCrossRefGoogle Scholar
  41. 41.
    Cimmino A., Calin G.A., Fabbri M., Iorio M.V., Ferracin M., Shimizu M., Wojcik S.E., Aqeilan R.I., Zupo S., Dono M., Rassenti L., Alder H., Volinia S., Liu C.G., Kipps T.J., Negrini M., Croce C.M. 2005. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. U. S. A. 102, 13944–13949.PubMedCrossRefGoogle Scholar
  42. 42.
    Chung E.Y., Dews M., Cozma D., Yu D., Wentzel E.A., Chang T.C., Schelter J.M., Cleary M.A., Mendell J.T., Thomas-Tikhonenko A. 2008. c-Myb oncoprotein is an essential target of the dleu2 tumor suppressor microRNA cluster. Cancer Biol. Ther. 7, 1758–1764.PubMedCrossRefGoogle Scholar
  43. 43.
    Akerman G.S., Rosenzweig B.A., Domon O.E., Tsai C.A., Bishop M.E., Mcgarrity L.J., Macgregor J.T., Sistare F.D., Chen J.J., Morris S.M. 2005. Alterations in gene expression profiles and the DNA-damage response in ionizing radiation-exposed TK6 cells. Environ. Mol. Mutagen. 45, 188–205.PubMedCrossRefGoogle Scholar
  44. 44.
    Shahi P., Loukianiouk S., Bohne-Lang A., Kenzelmann M., Kuffer S., Maertens S., Eils R., Grone H.J., Gretz N., Brors B. 2006. Argonaute: A database for gene regulation by mammalian microRNAs. Nucleic Acids Res. 34, D115–D118.PubMedCrossRefGoogle Scholar
  45. 45.
    Yanaihara N., Caplen N., Bowman E., Seike M., Kumamoto K., Yi M., Stephens R.M., Okamoto A., Yokota J., Tanaka T., Calin G.A., Liu C.G., Croce C.M., Harris C.C. 2006. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 9, 189–198.PubMedCrossRefGoogle Scholar
  46. 46.
    Ghandhi S.A., Yaghoubian B., Amundson S.A. 2008. Global gene expression analyses of bystander and alpha particle irradiated normal human lung fibroblasts: Synchronous and differential responses. BMC Med. Genomics. 1, 63.PubMedCrossRefGoogle Scholar
  47. 47.
    Herok R., Konopacka M., Polanska J., Swierniak A., Rogolinski J., Jaksik R., Hancock R., Rzeszowska-Wolny J. 2010. Bystander effects induced by medium from irradiated cells: Similar transcriptome responses in irradiated and bystander K562 cells. Int. J. Radiat. Oncol. Biol. Phys. 77, 244–252.PubMedCrossRefGoogle Scholar
  48. 48.
    Rzeszowska-Wolny J., Herok R., Widel M., Hancock R. 2009. X-irradiation and bystander effects induce similar changes of transcript profiles in most functional pathways in human melanoma cells. DNA Repair (Amsterdam). 8, 732–738.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Department of Medical Laboratory and Radiation SciencesUniversity of VermontBurlingtonUSA

Personalised recommendations