Molecular Biology

, Volume 46, Issue 2, pp 210–217

Association of chromosome 8q24 variants with prostate cancer risk in the Siberian region of Russia and meta-analysis

  • N. A. Os’kina
  • U. A. Boyarskikh
  • A. F. Lazarev
  • V. D. Petrova
  • D. I. Ganov
  • O. G. Tonacheva
  • G. I. Lifshits
  • M. L. Filipenko
Genomics. Transcriptomics

Abstract

Compelling evidence demonstrates the importance of chromosome 8q24 as a locus of susceptibility to prostate cancer. In this work, the association of common 8q24 variants, rs6983267 and rs1447295, with a sporadic risk of prostate cancer was analyzed in the Russian population of Siberia. For this purpose, the above polymorphisms were genotyped in 393 cases and 384 control individuals. The A allele of rs1447295 was significantly associated with prostate cancer risk (OR[CI 95%] = 1.74 [1.26–2.4], p = 7.8 × 10−4). The common G-A haplotype of rs6983267-rs1447295 also showed association with prostate cancer risk in Russians (OR[CI 95%] = 2.03 [1.1–3.75], p = 0.02). A meta-analysis combining our data with previously published results was performed to better evaluate the association between the SNPs studied and prostate cancer risk; its results strongly supported the association for both loci (p < 10−6). Thus, our study has confirmed the association of chromosome 8q24 with a risk of prostate cancer.

Keywords

prostate cancer single nucleotide polymorphism (SNP) Russian population chromosome 8q24 meta-analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lichtenstein P., Holm N.V., Verkasalo P.K., et al. 2000. Environmental and heritable factors in the causation of cancer: Analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343(2), 78–85.PubMedCrossRefGoogle Scholar
  2. 2.
    Witte J.S. 2009. Prostate cancer genomics: Towards a new understanding. Nature Rev. Genet. 10(2), 77–82.PubMedCrossRefGoogle Scholar
  3. 3.
    Amundadottir L.T., Sulem P., Gudmundsson J., et al. 2006. A common variant associated with prostate cancer in European and African populations. Nature Genet. 38(6), 652–658.PubMedCrossRefGoogle Scholar
  4. 4.
    Cheng I., Plummer S.J., Jorgenson E., et al. 2008. 8q24 and prostate cancer: Association with advanced disease and meta-analysis. Eur. J. Hum. Genet. 16(4), 496–505.PubMedCrossRefGoogle Scholar
  5. 5.
    Wigginton J.E., Cutler D.J., Abecasis G.R. 2005. A note on exact tests of Hardy-Weinberg equilibrium. Am. J. Hum. Genet. 76(5), 887–893.PubMedCrossRefGoogle Scholar
  6. 6.
    Gaunt T.R., Rodriguez S., Day I.N. 2007. Cubic exact solutions for the estimation of pairwise haplotype frequencies: Implications for linkage disequilibrium analyses and a web tool ‘CubeX’. BMC Bioinform. 8, 428.CrossRefGoogle Scholar
  7. 7.
    Schaid D.J., Rowland C.M., Tines D.E., et al. 2002. Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am. J. Hum. Genet. 70(2), 425–434.PubMedCrossRefGoogle Scholar
  8. 8.
    Gudmundsson J., Sulem P., Manolescu A., et al. 2007. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nature Genet. 39(5), 631–637.PubMedCrossRefGoogle Scholar
  9. 9.
    Haiman C.A., Patterson N., Freedman M.L., et al. 2007. Multiple regions within 8q24 independently affect risk for prostate cancer. Nature Genet. 39(5), 638–644.PubMedCrossRefGoogle Scholar
  10. 10.
    Yeager M., Orr N., Hayes R.B., et al. 2007. Genomewide association study of prostate cancer identifies a second risk locus at 8q24. Nature Genet. 39(5), 645–649.PubMedCrossRefGoogle Scholar
  11. 11.
    Fleming W.H., Hamel A., MacDonald R., et al. 1986. Expression of the c-myc protooncogene in human prostatic carcinoma and benign prostatic hyperplasia. Cancer Res. 46(3), 1535–1538.PubMedGoogle Scholar
  12. 12.
    Freedman M.L., Haiman C.A., Patterson N., et al. 2006. Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc. Natl. Acad. Sci. U. S. A. 103(38), 14068–14073.PubMedCrossRefGoogle Scholar
  13. 13.
    Yeager M., Xiao N., Hayes R.B., et al. 2008. Comprehensive resequence analysis of a 136-kb region of human chromosome 8q24 associated with prostate and colon cancers. Hum. Genet. 124(2), 161–170.PubMedCrossRefGoogle Scholar
  14. 14.
    Pomerantz M.M., Ahmadiyeh N., Jia L., et al. 2009. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nature Genet. 41(8), 882–884.PubMedCrossRefGoogle Scholar
  15. 15.
    Tuupanen S., Turunen M., Lehtonen R., et al. 2009. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. Nature Genet. 41(8), 885–890.PubMedCrossRefGoogle Scholar
  16. 16.
    Wright J.B., Brown S.J., Cole M.D. 2010. Upregulation of c-MYC in cis through a large chromatin loop linked to a cancer risk-associated single-nucleotide polymorphism in colorectal cancer cells. Mol. Cell Biol. 30(6), 1411–1420.PubMedCrossRefGoogle Scholar
  17. 17.
    He T.C., Sparks A.B., Rago C., et al. 1998. Identification of c-MYC as a target of the APC pathway. Science. 281(5382), 1509–1512.PubMedCrossRefGoogle Scholar
  18. 18.
    Sotelo J., Esposito D., Duhagon M.A., et al. 2010. Long-range enhancers on 8q24 regulate c-Myc. Proc. Natl. Acad. Sci. U. S. A. 107(7), 3001–3005.PubMedCrossRefGoogle Scholar
  19. 19.
    Tomlinson I., Webb E., Carvajal-Carmona L., et al. 2007. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nature Genet. 39(8), 984–988.PubMedCrossRefGoogle Scholar
  20. 20.
    Jia L., Landan G., Pomerantz M., et al. 2009. Functional enhancers at the gene-poor 8q24 cancer-linked locus. PLoS Genet. 5(8), e1000597.PubMedCrossRefGoogle Scholar
  21. 21.
    Okobia M.N., Zmuda J.M., Ferrell R.E., et al. 2011. Chromosome 8q24 variants are associated with prostate cancer risk in a high risk population of African ancestry. Prostate. 71(10), 1054–1063.PubMedCrossRefGoogle Scholar
  22. 22.
    Pal P., Xi H., Guha S., et al. 2009. Common variants in 8q24 are associated with risk for prostate cancer and tumor aggressiveness in men of European ancestry. Prostate. 69(14), 1548–1556.PubMedCrossRefGoogle Scholar
  23. 23.
    Ghoussaini M., Song H., Koessler T., et al. 2008. Multiple loci with different cancer specificities within the 8q24 gene desert. J. Natl. Cancer Inst. 100(13), 962–966.PubMedCrossRefGoogle Scholar
  24. 24.
    Wokolorczyk D., Gliniewicz B., Sikorski A., et al. 2008. A range of cancers is associated with the rs6983267 marker on chromosome 8. Cancer Res. 68(23), 9982–9986.PubMedCrossRefGoogle Scholar
  25. 25.
    Terada N., Tsuchiya N., Ma Z., et al. 2008. Association of genetic polymorphisms at 8q24 with the risk of prostate cancer in a Japanese population. Prostate. 68(15), 1689–1695.PubMedCrossRefGoogle Scholar
  26. 26.
    Liu M., Kurosaki T., Suzuki M., et al. 2009. Significance of common variants on human chromosome 8q24 in relation to the risk of prostate cancer in native Japanese men. BMC Genet. 10, 37.PubMedCrossRefGoogle Scholar
  27. 27.
    Robbins C., Torres J.B., Hooker S., et al. 2007. Confirmation study of prostate cancer risk variants at 8q24 in African Americans identifies a novel risk locus. Genome Res. 17(12), 1717–1722.PubMedCrossRefGoogle Scholar
  28. 28.
    Zeegers M.P., Khan H.S., Schouten L.J., et al. 2010. Genetic marker polymorphisms on chromosome 8q24 and prostate cancer in the Dutch population: DG8S737 may not be the causative variant. Eur. J. Hum. Genet. 19(1), 118–120.PubMedCrossRefGoogle Scholar
  29. 29.
    Schumacher F.R., Feigelson H.S., Cox D.G., et al. 2007. A common 8q24 variant in prostate and breast cancer from a large nested case-control study. Cancer Res. 67(7), 2951–2956.PubMedCrossRefGoogle Scholar
  30. 30.
    Meyer A., Schurmann P., Ghahremani M., et al. 2009. Association of chromosomal locus 8q24 and risk of prostate cancer: A hospital-based study of German patients treated with brachytherapy. Urol. Oncol. 27(4), 373–376.PubMedCrossRefGoogle Scholar
  31. 31.
    Severi G., Hayes V.M., Padilla E.J., et al. 2007. The common variant rs1447295 on chromosome 8q24 and prostate cancer risk: Results from an Australian population-based case-control study. Cancer Epidemiol. Biomark. Prev. 16(3), 610–612.CrossRefGoogle Scholar
  32. 32.
    Wang L., McDonnell S.K., Slusser J.P., et al. 2007. Two common chromosome 8q24 variants are associated with increased risk for prostate cancer. Cancer Res. 67(7), 2944–2950.PubMedCrossRefGoogle Scholar
  33. 33.
    Zheng S.L., Sun J., Cheng Y., et al. 2007. Association between two unlinked loci at 8q24 and prostate cancer risk among European Americans. J. Natl. Cancer Inst. 99(20), 1525–1533.PubMedCrossRefGoogle Scholar
  34. 34.
    Chen M., Huang Y.C., Ko I.L., et al. 2009. The rs1447295 at 8q24 is a risk variant for prostate cancer in Taiwanese men. Urology. 74(3), 698–701.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • N. A. Os’kina
    • 1
  • U. A. Boyarskikh
    • 1
  • A. F. Lazarev
    • 2
  • V. D. Petrova
    • 2
  • D. I. Ganov
    • 2
  • O. G. Tonacheva
    • 3
  • G. I. Lifshits
    • 1
  • M. L. Filipenko
    • 1
  1. 1.Institute of Chemical Biology and Basic MedicineSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Altai Affiliated Department of the Blokhin Cancer Research CenterRussian Academy of Medical SciencesBarnaulRussia
  3. 3.Krasnoyarsk Regional Oncologic CentreKrasnoyarskRussia

Personalised recommendations