Molecular Biology

, Volume 46, Issue 1, pp 134–141 | Cite as

Feedback between fluidity of membranes and transcription of the desB gene for the ω3-desaturase in the cyanobacterium Synechocystis

  • K. S. Mironov
  • E. G. Maksimov
  • G. V. Maksimov
  • D. A. Los
Molecular Biology of the Cell

Abstract

Cells of prokaryotes (including cyanobacteria) respond to a decrease in the environmental temperature by activation of multiple genes with a low-temperature response. A decrease in temperature causes a reduction of the cell membrane fluidity, which is maintained at an optimum level due to the activity of fatty acid (FA) desaturases. We studied a temperature-dependent expression of the desB gene for the ω3-desaturase in the cyanobacterium Synechocystis, which is able to synthesize polyunsaturated FA, as well as in its double mutant (desA /desD ), defective in the Δ12- and Δ6-desaturase genes, for which the presence of only monounsaturated FA is typical. During a decrease in temperature, in wild type cells the amount of desB mRNA increased, reaching a maximum value at 24°C. In the desA /desD double mutant, an accumulation of the desB transcript was characterized by a maximum at 28–30°C. Thus, using the desB gene encoding the ω3-FA-desaturase, it was demonstrated that a temperature-dependent expression of genes responsible for the maintenance of an optimal fluidity of cell membranes is determined by a physical state of these membranes and is regulated by a feedback mode.

Keywords

Synechocystis fluidity of membranes cold stress expression of genes 

Abbreviations

FA

fatty acids

PUFA

polyunsaturated FA

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Novikova G.V., Moshkov I.E., Los D.A. 2007. Protein sensors and transducers of cold and osmotic stress in cyanobacteria and plants. Mol. Biol. (Moscow). 41, 427–437.CrossRefGoogle Scholar
  2. 2.
    Los D.A., Zorina A., Sinetova V., Kryazhov S., Mironov K., Zinchenko V.V. 2010. Stress sensors and signal transducers in cyanobacteria. Sensors. 10, 2386–2415.PubMedCrossRefGoogle Scholar
  3. 3.
    Zorina A.A., Mironov K.S., Stepanchenko N.S., Sinetova M.A., Kupriyanova E.V., Allakhverdiev S.I., Los D.A. 2011. Regulation systems for stress responses in cyanobacteria. Russ. J. Plant Physiol. 58, 749–767.CrossRefGoogle Scholar
  4. 4.
    Los D.A., Zinchenko V.V. 2009. Regulatory role of membrane fluidity in gene expression. In: Lipids in Photosynthesis. Eds. Wada H., Murata N. Springer, pp. 329–348.Google Scholar
  5. 5.
    Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M., Sasamoto S., Kimura T., Hosouchi T., Matsuno Ai, Muraki A., Nakazaki N., Naruo K., Okumura S., Shimpo S., Takeuchi C., Wada T., Watanabe A., Yamada M., Yasuda M., Tabata S. 1996. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803: 2. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 3, 109–136.PubMedCrossRefGoogle Scholar
  6. 6.
    Mansilla M.C., Cybulski L.E., Albanesi D., de Mendoza D. 2004. Control of membrane lipid fluidity by molecular thermosensors. J. Bacteriol. 186, 6681–6688.PubMedCrossRefGoogle Scholar
  7. 7.
    Los D.A., Murata N. 1998. Structure and expression of fatty acid desaturases. Biochim. Biophys. Acta. 1394, 3–15.PubMedGoogle Scholar
  8. 8.
    Vigh L., Los D.A., Horvath I., Murata N. 1993. The primary signal in the biological perception of temperature: Pd-catalyzed hydrogenation of membrane lipids stimulates the expression of the desA gene in Synechocystis PCC6803. Proc. Natl. Acad. Sci. U. S. A. 90, 9090–9094.PubMedCrossRefGoogle Scholar
  9. 9.
    Suzuki I., Los D.A., Kanesaki Y., Mikami K., Murata N. 2000. The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J. 19, 1327–1334.PubMedCrossRefGoogle Scholar
  10. 10.
    Suzuki I., Kanesaki Y., Mikami K., Kanehisa M., Murata N. 2001. Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis. Mol. Microbiol. 40, 235–244.PubMedCrossRefGoogle Scholar
  11. 11.
    Inaba M., Suzuki I., Szalontai B., Kanesaki Y., Los D.A., Hayashi H., Murata N. 2003. Gene-engineered rigidification of membrane lipids enhances the cold inducibility of gene expression in Synechocystis. J. Biol. Chem. 278, 12191–12198.PubMedCrossRefGoogle Scholar
  12. 12.
    Murata N., Los D.A. 2006. Histidine kinase Hik33 is an important participant in cold-signal transduction in cyanobacteria. Physiol. Plant. 126, 17–27.CrossRefGoogle Scholar
  13. 13.
    Okada K., Satoh K., Katoh S. 1991. Chloramphenicol is an inhibitor of photosynthesis. FEBS Lett. 295, 155–158.PubMedCrossRefGoogle Scholar
  14. 14.
    Williams J.G.K. 1988. Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Methods Enzymol. 167, 766–778.CrossRefGoogle Scholar
  15. 15.
    Rippka R., Deruelles J., Waterbury J., Herdman M., Stanier R. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Gen. Microbiol. 111, 1–61.Google Scholar
  16. 16.
    Grigorieva G., Shestakov S. 1982. Transformation in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol. Lett. 13, 367–370.Google Scholar
  17. 17.
    Zang X., Liu B., Liu S., Arunakumara K.K.I.U., Zhang X. 2007. Optimum conditions for transformation of Synechocystis sp. PCC 6803. J. Microbiol. 45, 241–245.PubMedGoogle Scholar
  18. 18.
    Nakamura Y., Kaneko T., Hirosawa M., Miyajima N., Tabata S. 1998. CyanoBase, a www database containing the complete nucleotide sequence of the genome of Synechocystis sp. strain PCC 6803. Nucleic Acids Res. 26, 63–67.PubMedCrossRefGoogle Scholar
  19. 19.
    Sambrook J., Fritsch E.F., Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.Google Scholar
  20. 20.
    Bligh E.G., Dyer W.J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917.PubMedCrossRefGoogle Scholar
  21. 21.
    Marshall C.P., Leuko S., Coyle C.M., Walter M.R., Burns B.P., Neilan B.A. 2007. Integration of β-carotene molecules in small liposomes. Astrobiology. 7, 631–643.PubMedCrossRefGoogle Scholar
  22. 22.
    Los D.A., Murata N. 2004. Membrane fluidity and its roles in the perception of environmental signals. Biochim. Biohys. Acta. 1666, 142–157.CrossRefGoogle Scholar
  23. 23.
    Los D.A. 2004. The effect of low-temperature-induced DNA supercoiling on the expression of the desaturase genes in Synechocystis. Cell Mol. Biol. 50, 605–612.PubMedGoogle Scholar
  24. 24.
    Prakash J.S.S., Sinetova M., Kupriyanova E., Zorina A., Suzuki I., Murata N., Los D.A. (2009) DNA supercoiling regulates the stress-inducible expression of genes in the cyanobacterium. Mol. BioSystems. 5, 1904–1912.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • K. S. Mironov
    • 1
  • E. G. Maksimov
    • 2
  • G. V. Maksimov
    • 2
  • D. A. Los
    • 1
  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations