Molecular Biology

, Volume 46, Issue 1, pp 1–10 | Cite as

Nucleosomes in gene regulation: Theoretical approaches

  • V. B. Teif
  • A. V. Shkrabkou
  • V. P. Egorova
  • V. I. Krot
Reviews

Abstract

This work reviews current theoretical approaches of biophysics and bioinformatics for the description of nucleosome arrangements in chromatin and transcription factor binding to nucleosomal organized DNA. The role of nucleosomes in gene regulation is discussed from the molecular-mechanistic and biological points of view. In addition to classical problems in this field, actual questions of epigenetic regulation are discussed. The authors selected for discussion what seem to be the most interesting concepts and hypotheses. Mathematical approaches are described in a simplified language to attract attention to the most important directions of this field.

Keywords

nucleosome chromatin lattice models competitive binding transcription factors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Olins A.L., Olins D.E. 1974. Spheroid chromatin units (v bodies). Science. 183, 330–332.PubMedCrossRefGoogle Scholar
  2. 2.
    van Holde K.E. 1989. Chromatin. N.Y.: Springer.CrossRefGoogle Scholar
  3. 3.
    Davey C.A., Sargent D.F., Luger K., Maeder A.W., Richmond T.J. 2002. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J. Mol. Biol. 319, 1097–1113.PubMedCrossRefGoogle Scholar
  4. 4.
    Teif V.B., Bohinc K. 2011. Condensed DNA: Condensing the concepts. Progr. Biophys. Mol. Biol. 105, 208–222.CrossRefGoogle Scholar
  5. 5.
    Boeger H., Griesenbeck J., Kornberg R.D. 2008. Nucleosome retention and the stochastic nature of promoter chromatin remodeling for transcription. Cell. 133, 716–726.PubMedCrossRefGoogle Scholar
  6. 6.
    Kim H.D., O’shea E.K. 2008. A quantitative model of transcription factor-activated gene expression. Nature Struct. Mol. Biol. 15, 1192–1198.CrossRefGoogle Scholar
  7. 7.
    Lam F.H., Steger D.J., O’shea E.K. 2008. Chromatin decouples promoter threshold from dynamic range. Nature. 453, 246–250.PubMedCrossRefGoogle Scholar
  8. 8.
    Petesch S.J., Lis J.T. 2008. Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci. Cell. 134, 74–84.PubMedCrossRefGoogle Scholar
  9. 9.
    Whitehouse I., Rando O.J., Delrow J., Tsukiyama T. 2007. Chromatin remodelling at promoters suppresses antisense transcription. Nature. 450, 1031–1035.PubMedCrossRefGoogle Scholar
  10. 10.
    Zhao X., Pendergrast P.S., Hernandez N. 2001. A positioned nucleosome on the human U6 promoter allows recruitment of SNAPc by the Oct-1 POU domain. Mol. Cell. 7, 539–549.PubMedCrossRefGoogle Scholar
  11. 11.
    Razin S.V. 2007. Chromatin and transcription regulation. Mol. Biol. (Moscow). 41, 343–348.CrossRefGoogle Scholar
  12. 12.
    Razin S.V., Bystritskii A.A. 2009. Chromatin: The Packed Genome, Moscow: BINOM.Google Scholar
  13. 13.
    Osipov S.A., Preobrazhenskaia O.V., Karpov V.L. 2010. Chromatin structure and transcription regulation in Saccharomyces cerevisiae. Mol. Biol. (Moscow). 44, 856–869.CrossRefGoogle Scholar
  14. 14.
    Sivolob A.V. 2010. Nucleosome conformational flexibility in experiments with single chromatin fibers. Biopol. Cell. 26, 351–359.Google Scholar
  15. 15.
    Trifonov E.N. 1980. Sequence-dependent deformational anisotropy of chromatin DNA. Nucleic Acids Res. 8, 4041–4053.PubMedCrossRefGoogle Scholar
  16. 16.
    Trifonov E.N., Sussman J.L. 1980. The pitch of chromatin DNA is reflected in its nucleotide sequence. Proc. Natl. Acad. Sci. U.S.A. 77, 3816–3820.PubMedCrossRefGoogle Scholar
  17. 17.
    Yuan G.C., Liu Y.J., Dion M.F., Slack M.D., Wu L.F., Altschuler S.J., Rando O.J. 2005. Genome-scale identification of nucleosome positions in S. cerevisiae. Science. 309, 626–630.PubMedCrossRefGoogle Scholar
  18. 18.
    Ioshikhes I.P., Albert I., Zanton S.J., Pugh B.F. 2006. Nucleosome positions predicted through comparative genomics. Nature Genet. 38, 1210–1215.PubMedCrossRefGoogle Scholar
  19. 19.
    Johnson S.M., Tan F.J., McCullough H.L., Riordan D.P., Fire A.Z. 2006. Flexibility and constraint in the nucleosome core landscape of Caenorhabditis elegans chromatin. Genome Res. 16, 1505–1516.PubMedCrossRefGoogle Scholar
  20. 20.
    Segal E., Fondufe-Mittendorf Y., Chen L., Thåström A., Field Y., Moore I.K., Wang J.P., Widom J. 2006. A genomic code for nucleosome positioning. Nature. 442, 772–778.PubMedCrossRefGoogle Scholar
  21. 21.
    Schones D.E., Zhao K. 2008. Genome-wide approaches to studying chromatin modifications. Nature Rev. Genet. 9, 179–191.PubMedCrossRefGoogle Scholar
  22. 22.
    Jiang C., Pugh B.F. 2009. Nucleosome positioning and gene regulation: Advances through genomics. Nature Rev. Gene. 10, 161–172.CrossRefGoogle Scholar
  23. 23.
    Park P.J. 2009. ChIP-seq: Advantages and challenges of a maturing technology. Nature Rev. Genet. 10, 669–680.PubMedCrossRefGoogle Scholar
  24. 24.
    Cairns B.R. 2009. The logic of chromatin architecture and remodelling at promoters. Nature. 461, 193–198.PubMedCrossRefGoogle Scholar
  25. 25.
    Radman-Livaja M., Rando O.J. 2009. Nucleosome positioning: How is it established, and why does it matter? Dev. Biol. 339, 258–266.PubMedCrossRefGoogle Scholar
  26. 26.
    Segal E., Widom J. 2009. From DNA sequence to transcriptional behaviour: A quantitative approach. Nature Rev. Genet. 10, 443–456.PubMedCrossRefGoogle Scholar
  27. 27.
    Teif V., Rippe K. 2010. Statistical-mechanical lattice models for protein-DNA binding in chromatin. J. Phys.: Condens. Matter. 22, 414105.CrossRefGoogle Scholar
  28. 28.
    Tolkunov D., Morozov A.V. 2010. Genomic studies and computational predictions of nucleosome positions and formation energies. Adv. Prot. Chem. Struct. Biol. 79, 1–57.CrossRefGoogle Scholar
  29. 29.
    Trifonov E.N. 2011. Cracking the chromatin code: Precise rule of nucleosome positioning. Phys. Life Rev. 8, 39–50.PubMedCrossRefGoogle Scholar
  30. 30.
    Thåström A., Lowary P.T., Widlund H.R., Cao H., Kubista M., Widom J. 1999. Sequence motifs and free energies of selected natural and non-natural nucleosome positioning DNA sequences. J. Mol. Biol. 288, 213–229.PubMedCrossRefGoogle Scholar
  31. 31.
    Whitehouse I., Tsukiyama T. 2006. Antagonistic forces that position nucleosomes in vivo. Nature Struct. Mol. Biol. 13, 633–640.CrossRefGoogle Scholar
  32. 32.
    Peckham H.E., Thurman R.E., Fu Y., Stamatoyannopoulos J.A., Noble W.S., Struhl K., Weng Z. 2007. Nucleosome positioning signals in genomic DNA. Genome Res. 17, 1170–1177.PubMedCrossRefGoogle Scholar
  33. 33.
    Trifonov E.N. 2010. Nucleosome positioning by sequence, state of the art and apparent finale. J. Biomol. Struct. Dyn. 27, 741–746.PubMedGoogle Scholar
  34. 34.
    Workman J.L., Kingston R.E. 1992. Nucleosome core displacement in vitro via a metastable transcription factor-nucleosome complex. Science. 258, 1780–1784.PubMedCrossRefGoogle Scholar
  35. 35.
    Morozov A.V., Fortney K., Gaykalova D.A., Studitsky V.M., Widom J., Siggia E.D. 2009. Using DNA mechanics to predict in vitro nucleosome positions and formation energies. Nucleic Acids Res. 37, 4707–4722.PubMedCrossRefGoogle Scholar
  36. 36.
    Wasson T., Hartemink A.J. 2009. An ensemble model of competitive multi-factor binding of the genome. Genome Res. 19, 2101–2112.PubMedCrossRefGoogle Scholar
  37. 37.
    Teif V., Ettig R., Rippe K. 2010. A lattice model for nucleosome unwrapping. Biophys. J. 99, 2597–2607.PubMedCrossRefGoogle Scholar
  38. 38.
    Hartley P.D., Madhani H.D. 2009. Mechanisms that specify promoter nucleosome location and identity. Cell. 137, 445–458.PubMedCrossRefGoogle Scholar
  39. 39.
    Teif V.B., Rippe K. 2009. Predicting nucleosome positions on the DNA: Combining intrinsic sequence preferences and remodeler activities. Nucleic Acids Res. 37, 5641–5655.PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang Y., Moqtaderi Z., Rattner B.P., Euskirchen G., Snyder M., Kadonaga J.T., Liu X.S., Struhl K. 2009. Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo. Nature Struct. Mol. Biol. 16, 847–852.CrossRefGoogle Scholar
  41. 41.
    Erdel F., Schubert T., Marth C., Längst G., Rippe K. 2010. Human ISWI chromatin-remodeling complexes sample nucleosomes via transient binding reactions and become immobilized at active sites. Proc. Natl. Acad. Sci. U.S.A. 107, 19873–19878.PubMedCrossRefGoogle Scholar
  42. 42.
    Xu F., Olson W.K. 2010. DNA architecture, deformability, and nucleosome positioning. J Biomol. Struct. Dyn. 27, 725–739.PubMedGoogle Scholar
  43. 43.
    Heddi B., Oguey C., Lavelle C., Foloppe N., Hartmann B. 2010. Intrinsic flexibility of B-DNA: The experimental TRX scale. Nucleic Acids Res. 38, 1034–1047.PubMedCrossRefGoogle Scholar
  44. 44.
    Bettecken T., Trifonov E.N. 2009. Repertoires of the nucleosome-positioning dinucleotides. PLoS ONE. 4, e7654.PubMedCrossRefGoogle Scholar
  45. 45.
    Schwanbeck R., Xiao H., Wu C. 2004. Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex. J. Biol. Chem. 279, 39933–39941.PubMedCrossRefGoogle Scholar
  46. 46.
    Zofall M., Persinger J., Kassabov S.R., Bartholomew B. 2006. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nature Struct. Mol. Biol. 13, 339–346.CrossRefGoogle Scholar
  47. 47.
    Segal E., Widom J. 2009. Poly(dA:dT) tracts: Major determinants of nucleosome organization. Curr. Opin. Struct. Biol. 19, 65–71.PubMedCrossRefGoogle Scholar
  48. 48.
    Bi X., Yu Q., Sandmeier J.J., Zou Y. 2004. Formation of boundaries of transcriptionally silent chromatin by nucleosome-excluding structures. Mol. Cell. Biol. 24, 2118–2131.PubMedCrossRefGoogle Scholar
  49. 49.
    Anderson J.D., Widom J. 2000. Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites. J. Mol. Biol. 296, 979–987.PubMedCrossRefGoogle Scholar
  50. 50.
    Thåström A., Lowary P.T., Widom J. 2004. Measurement of histone-DNA interaction free energy in nucleosomes. Methods. 33, 33–44.PubMedCrossRefGoogle Scholar
  51. 51.
    Längst G., Teif V.B., Rippe K. 2011. Chromatin remodeling by translocation of nucleosomes. In: Genome Organization and Function in the Cell Nucleus. Ed. Rippe K. Weinheim: Wiley, pp. 111–139.CrossRefGoogle Scholar
  52. 52.
    Tolstorukov M.Y., Choudhary V., Olson W.K., Zhurkin V.B., Park P.J. 2008. nuScore: A web-interface for nucleosome positioning predictions. Bioinformatics. 24, 1456–1458.PubMedCrossRefGoogle Scholar
  53. 53.
    Milani P., Chevereau G., Vaillant C., Audit B., Haftek-Terreau Z., Marilley M., Bouvet P., Argoul F., Arneodo A. 2009. Nucleosome positioning by genomic excluding-energy barriers. Proc. Natl. Acad. Sci. U.S.A. 106, 22257–22262.PubMedCrossRefGoogle Scholar
  54. 54.
    Scipioni A., Morosetti S., de Santis P. 2009. A statistical thermodynamic approach for predicting the sequence-dependent nucleosome positioning along genomes. Biopolymers. 91, 1143–1153.PubMedCrossRefGoogle Scholar
  55. 55.
    Cui F., Zhurkin V.B. 2010. Structure-based analysis of DNA sequence patterns guiding nucleosome positioning in vitro. J. Biomol. Struct. Dyn. 27, 821–841.PubMedGoogle Scholar
  56. 56.
    Locke G., Tolkunov D., Moqtaderi Z., Struhl K., Morozov A.V. 2010. High-throughput sequencing reveals a simple model of nucleosome energetics. Proc. Natl. Acad. Sci. U.S.A. 107, 20998–21003.PubMedCrossRefGoogle Scholar
  57. 57.
    Albert I., Mavrich T.N., Tomsho L.P., Qi J., Zanton S.J., Schuster S.C., Pugh B.F. 2007. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature. 446, 572–576.PubMedCrossRefGoogle Scholar
  58. 58.
    Lee W., Tillo D., Bray N., Morse R.H., Davis R.W., Hughes T.R., Nislow C. 2007. A high-resolution atlas of nucleosome occupancy in yeast. Nature Genet. 39, 1235–1244.PubMedCrossRefGoogle Scholar
  59. 59.
    Field Y., Kaplan N., Fondufe-Mittendorf Y., Moore I.K., Sharon E., Lubling Y., Widom J., Segal E. 2008. Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comp. Biol. 4, e1000216.CrossRefGoogle Scholar
  60. 60.
    Gupta S., Dennis J., Thurman R.E., Kingston R., Stamatoyannopoulos J.A., Noble W.S. 2008. Predicting human nucleosome occupancy from primary sequence. PLoS Comp. Biol. 4, e1000134.CrossRefGoogle Scholar
  61. 61.
    Yuan G.-C., Liu J.S. 2008. Genomic sequence is highly predictive of local nucleosome depletion. PLoS Comp. Biol. 4, e13.CrossRefGoogle Scholar
  62. 62.
    Gabdank I., Barash D., Trifonov E.N. 2010. FineStr: A web server for single-base-resolution nucleosome positioning. Bioinformatics. 26, 845–846.PubMedCrossRefGoogle Scholar
  63. 63.
    Ogawa R., Kitagawa N., Ashida H., Saito R., Tomita M. 2010. Computational prediction of nucleosome positioning by calculating the relative fragment frequency index of nucleosomal sequences. FEBS Lett. 584, 1498–1502.PubMedCrossRefGoogle Scholar
  64. 64.
    Stormo G.D., Zhao Y. 2010. Determining the specificity of protein-DNA interactions. Nature Rev. Genet. 11, 751–760.PubMedGoogle Scholar
  65. 65.
    Berg O.G., von Hippel P.H. 1987. Selection of DNA binding sites by regulatory proteins: Statisticalmechanical theory and application to operators and promoters. J. Mol. Biol. 193, 723–750.PubMedCrossRefGoogle Scholar
  66. 66.
    Pfreundt U., James D.P., Tweedie S., Wilson D., Teichmann S.A., Adryan B. 2010. FlyTF: Improved annotation and enhanced functionality of the Drosophila transcription factor database. Nucleic Acids Res. 38, D443–D447.PubMedCrossRefGoogle Scholar
  67. 67.
    Portales-Casamar E., Thongjuea S., Kwon A.T., Arenillas D., Zhao X., Valen E., Yusuf D., Lenhard B., Wasserman W.W., Sandelin A. 2010. JASPAR 2010: The greatly expanded open-access database of transcription factor binding profiles. Nucleic Acids Res. 38, D105–D110.PubMedCrossRefGoogle Scholar
  68. 68.
    Wingender E., Dietze P., Karas H., Knuppel R. 1996. TRANSFAC: A database on transcription factors and their DNA binding sites. Nucleic Acids Res. 24, 238–241.PubMedCrossRefGoogle Scholar
  69. 69.
    Collings C.K., Fernandez A.G., Pitschka C.G., Hawkins T.B., Anderson J.N. 2010. Oligonucleotide sequence motifs as nucleosome positioning signals. PLoS ONE. 5, e10933.PubMedCrossRefGoogle Scholar
  70. 70.
    Gabdank I., Barash D., Trifonov E.N. 2009. Nucleosome DNA bendability matrix (C. elegans). J. Biomol. Struct. Dyn. 26, 403–411.PubMedGoogle Scholar
  71. 71.
    Levitsky V.G. 2004. RECON: A program for prediction of nucleosome formation potential. Nucleic Acids Res. 32, W346–W349.PubMedCrossRefGoogle Scholar
  72. 72.
    Xi L., Fondufe-Mittendorf Y., Xia L., Flatow J., Widom J., Wang J.P. 2010. Predicting nucleosome positioning using a duration Hidden Markov Model. BMC Bioinform. 11, 346.CrossRefGoogle Scholar
  73. 73.
    Teif V.B., Rippe K. 2011. Calculating transcription factor binding maps for chromatin. Brief. Bioinform. (in press). doi 10.1093/bib/bbr037.Google Scholar
  74. 74.
    Hermsen R., Tans S., ten Wolde P.R. 2006. Transcriptional regulation by competing transcription factor modules. PLoS Comp. Biol. 2, e164.CrossRefGoogle Scholar
  75. 75.
    Segal E., Raveh-Sadka T., Schroeder M., Unnerstall U., Gaul U. 2008. Predicting expression patterns from regulatory sequence in Drosophila segmentation. Nature. 451, 535–540.PubMedCrossRefGoogle Scholar
  76. 76.
    He X., Chen C.C., Hong F., Fang F., Sinha S., Ng H.H., Zhong S. 2009. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data. PLoS ONE. 4, e8155.PubMedCrossRefGoogle Scholar
  77. 77.
    Laurila K., Yli-Harja O., Lahdesmaki H. 2009. A protein-protein interaction guided method for competitive transcription factor binding improves target predictions. Nucleic Acids Res. 37, e146.PubMedCrossRefGoogle Scholar
  78. 78.
    He X., Samee M.A., Blatti C., Sinha S. 2010. Thermodynamics-based models of transcriptional regulation by enhancers: The roles of synergistic activation, cooperative binding and short-range repression. PLoS Comp. Biol. 6, e1000935.CrossRefGoogle Scholar
  79. 79.
    Gurskii G.V., Zasedatelev A.S. 1978. Precise relationships for calculating the binding of regulatory proteins and other lattice ligands in double-stranded polynucleotides. Biofizika. 23, 932–946.PubMedGoogle Scholar
  80. 80.
    Krylov A.S., Grokhovsky S.L., Zasedatelev A.S., Zhuze A.L., Gursky G.V., Gottikh B.P. 1979. Quantitative estimation of the contribution of pyrrolcarboxamide groups of the antibiotic distamycin A into specificity of its binding to DNA AT pairs. Nucleic Acids Res. 6, 289–304.PubMedCrossRefGoogle Scholar
  81. 81.
    Wolfe A.R., Meehan T. 1992. Use of binding site neighbor-effect parameters to evaluate the interactions between adjacent ligands on a linear lattice: Effects on ligand-lattice association. J. Mol. Biol. 223, 1063–1087.PubMedCrossRefGoogle Scholar
  82. 82.
    Nechipurenko Yu.D., Gurskii G.V. 2003. Thermodynamic models of binding ligands to nucleic acids. Biofizika. 48, 773–796.PubMedGoogle Scholar
  83. 83.
    Kornberg R.D., Stryer L. 1988. Statistical distributions of nucleosomes: Nonrandom locations by a stochastic mechanism. Nucleic Acids Res. 16, 6677–6690.PubMedCrossRefGoogle Scholar
  84. 84.
    Epstein I.R. 1978. Cooperative and noncooperative binding of large ligands to a finite one-dimensional lattice: A model for ligand-oligonucleotide interactions. Biophys. Chem. 8, 327–339.PubMedCrossRefGoogle Scholar
  85. 85.
    Di Cera E., Phillipson P.E. 1996. Map analysis of ligand binding to a linear lattice. Biophys. Chem. 61, 125–129.PubMedCrossRefGoogle Scholar
  86. 86.
    Flyvbjerg H., Keatch S.A., Dryden D.T. 2006. Strong physical constraints on sequence-specific target location by proteins on DNA molecules. Nucleic Acids Res. 34, 2550–2557.PubMedCrossRefGoogle Scholar
  87. 87.
    Kharchenko P.V., Woo C.J., Tolstorukov M.Y., Kingston R.E., Park P.J. 2008. Nucleosome positioning in human HOX gene clusters. Genome Res. 18, 1554–1561.PubMedCrossRefGoogle Scholar
  88. 88.
    Mavrich T.N., Ioshikhes I.P., Venters B.J., Jiang C., Tomsho L.P., Qi J., Schuster S.C., Albert I., Pugh B.F. 2008. A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res. 18, 1073–1083.PubMedCrossRefGoogle Scholar
  89. 89.
    Cuddapah S., Jothi R., Schones D.E., Roh T.-Y., Cui K., Zhao K. 2009. Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res. 19, 24–32.PubMedCrossRefGoogle Scholar
  90. 90.
    Vaillant C., Palmeira L., Chevereau G., Audit B., d’Aubenton-Carafa Y., Thermes C., Arneodo A. 2010. A novel strategy of transcription regulation by intragenic nucleosome ordering. Genome Res. 20, 59–67.PubMedCrossRefGoogle Scholar
  91. 91.
    Nechipurenko Yu.D., Vol’kenshtein M.V. 1986. Analysis of the nucleosome arrangement on satellite DNA. Dokl. Akad. Nauk. SSSR. 286, 216–220.PubMedGoogle Scholar
  92. 92.
    Nechipurenko Yu.D. 1988. Anticooperative interactions between the nearest neighbor chromatosomes. Biofizika. 33, 580–583.PubMedGoogle Scholar
  93. 93.
    Iovanovich B., Nechipurenko Yu.D. 1990. Analysis of distribution of ligands adsorbed on DNA fragments. Mol. Biol. (Moscow). 24, 478–486.Google Scholar
  94. 94.
    Schwab D.J., Bruinsma R.F., Rudnick J., Widom J. 2008. Nucleosome switches. Phys. Rev. Lett. 100, 228105.PubMedCrossRefGoogle Scholar
  95. 95.
    Chevereau G., Palmeira L., Thermes C., Arneodo A., Vaillant C. 2009. Thermodynamics of intragenic nucleosome ordering. Phys. Rev. Lett. 103, 188103.PubMedCrossRefGoogle Scholar
  96. 96.
    Stefanovsky V.Y., Pelletier G., Bazett-Jones D.P., Crane-Robinson C., Moss T. 2001. DNA looping in the RNA polymerase I enhancesome is the result of non-cooperative in-phase bending by two UBF molecules. Nucleic Acids Res. 29, 3241–3247.PubMedCrossRefGoogle Scholar
  97. 97.
    Anderson J.D., Thåström A., Widom J. 2002. Spontaneous access of proteins to buried nucleosomal DNA target sites occurs via a mechanism that is distinct from nucleosome translocation. Mol. Cell. Biol. 22, 7147–7157.PubMedCrossRefGoogle Scholar
  98. 98.
    Li G., Levitus M., Bustamante C., Widom J. 2005. Rapid spontaneous accessibility of nucleosomal DNA. Nature Struct. Mol. Biol. 12, 46–53.CrossRefGoogle Scholar
  99. 99.
    Bucceri A., Kapitza K., Thoma F. 2006. Rapid accessibility of nucleosomal DNA in yeast on a second time scale. EMBO J. 25, 3123–3132.PubMedCrossRefGoogle Scholar
  100. 100.
    Poirier M.G., Bussiek M., Langowski J., Widom J. 2008. Spontaneous access to DNA target sites in folded chromatin fibers. J. Mol. Biol. 379, 772–786.PubMedCrossRefGoogle Scholar
  101. 101.
    Gansen A., Valeri A., Hauger F., Felekyan S., Kalinin S., Toth K., Langowski J., Seidel C.A. 2009. Nucleosome disassembly intermediates characterized by singlemolecule FRET. Proc. Natl. Acad. Sci. USA. 106, 15308–15313.PubMedCrossRefGoogle Scholar
  102. 102.
    Koopmans W.J., Buning R., Schmidt T., van Noort J. 2009. spFRET using alternating excitation and FCS reveals progressive DNA unwrapping in nucleosomes. Biophys. J. 97, 195–204.PubMedCrossRefGoogle Scholar
  103. 103.
    Poirier M.G., Oh E., Tims H.S., Widom J. 2009. Dynamics and function of compact nucleosome arrays. Nature Struct. Mol. Biol. 16, 938–944.CrossRefGoogle Scholar
  104. 104.
    Shlyakhtenko L.S., Lushnikov A.Y., Lyubchenko Y.L. 2009. Dynamics of nucleosomes revealed by timelapse atomic force microscopy. Biochemistry. 48, 7842–7848.PubMedCrossRefGoogle Scholar
  105. 105.
    Zlatanova J., Bishop T.C., Victor J.M., Jackson V., van Holde K. 2009. The nucleosome family: Dynamic and growing. Structure. 17, 160–171.PubMedCrossRefGoogle Scholar
  106. 106.
    Suzuki Y., Higuchi Y., Hizume K., Yokokawa M., Yoshimura S.H., Yoshikawa K., Takeyasu K. 2010. Molecular dynamics of DNA and nucleosomes in solution studied by fast-scanning atomic force microscopy. Ultramicroscopy. 110, 682–688.PubMedCrossRefGoogle Scholar
  107. 107.
    Teif V.B. 2007. General transfer matrix formalism to calculate DNA-protein-drug binding in gene regulation: Application to OR operator of phage lambda. Nucleic Acids Res. 35, e80.PubMedCrossRefGoogle Scholar
  108. 108.
    Brower-Toland B.D., Smith C.L., Yeh R.C., Lis J.T., Peterson C.L., Wang M.D. 2002. Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA. Proc. Natl. Acad. Sci. USA. 99, 1960–1965.PubMedCrossRefGoogle Scholar
  109. 109.
    Kulić I.M., Schiessel H. 2004. DNA spools under tension. Phys. Rev. Lett. 92, 228101.PubMedCrossRefGoogle Scholar
  110. 110.
    Möbius W., Neher R.A., Gerland U. 2006. Kinetic accessibility of buried DNA sites in nucleosomes. Phys. Rev. Lett. 97, 208102.PubMedCrossRefGoogle Scholar
  111. 111.
    Qamhieh K., Nylander T., Ainalem M.L. 2009. Analytical model study of dendrimer/DNA complexes. Biomacromolecules. 10, 1720–1726.PubMedCrossRefGoogle Scholar
  112. 112.
    Engeholm M., de Jager M., Flaus A., Brenk R., van Noort J., Owen-Hughes T. 2009. Nucleosomes can invade DNA territories occupied by their neighbors. Nature Struct. Mol. Biol. 16, 151–158.CrossRefGoogle Scholar
  113. 113.
    Mirny L.A. 2010. Nucleosome-mediated cooperativity between transcription factors. Proc. Natl. Acad. Sci. U.S.A. 107, 22534–22539.PubMedCrossRefGoogle Scholar
  114. 114.
    Sekiya T., Muthurajan U.M., Luger K., Tulin A.V., Zaret K.S. 2009. Nucleosome-binding affinity as a primary determinant of the nuclear mobility of the pioneer transcription factor FoxA. Genes Dev. 23, 804–809.PubMedCrossRefGoogle Scholar
  115. 115.
    Kolesov G., Wunderlich Z., Laikova O.N., Gelfand M.S., Mirny L.A. 2007. How gene order is influenced by the biophysics of transcription regulation. Proc. Natl. Acad. Sci. U.S.A. 104, 13948–13953.PubMedCrossRefGoogle Scholar
  116. 116.
    Adams C.C., Workman J.L. 1995. Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative. Mol. Cell. Biol. 15, 1405–1421.PubMedGoogle Scholar
  117. 117.
    Polach K.J., Widom J. 1996. A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J. Mol. Biol. 258, 800–812.PubMedCrossRefGoogle Scholar
  118. 118.
    Schones D.E., Cui K., Cuddapah S., Roh T.Y., Barski A., Wang Z., Wei G., Zhao K. 2008. Dynamic regulation of nucleosome positioning in the human genome. Cell. 132, 887–898.PubMedCrossRefGoogle Scholar
  119. 119.
    Kaplan N., Moore I.K., Fondufe-Mittendorf Y., Gossett A.J., Tillo D., Field Y., LeProust E.M., Hughes T.R., Lieb J.D., Widom J., Segal E. 2009. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature. 458, 362–366.PubMedCrossRefGoogle Scholar
  120. 120.
    Weiner A., Hughes A., Yassour M., Rando O.J., Friedman N. 2010. High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. Genome Res. 20, 90–100.PubMedCrossRefGoogle Scholar
  121. 121.
    Teif V.B. 2010. Predicting gene-regulation functions: Lessons from temperate bacteriophages. Biophys. J. 98, 1247–1256.PubMedCrossRefGoogle Scholar
  122. 122.
    Wippo C.J., Israel L., Watanabe S., Hochheimer A., Peterson C.L., Korber P. 2011. The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes. EMBO J. 30, 1277–1288.PubMedCrossRefGoogle Scholar
  123. 123.
    Lantermann A.B., Straub T., Stralfors A., Yuan G.C., Ekwall K., Korber P. 2010. Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae. Nature Struct. Mol. Biol. 17, 251–257.CrossRefGoogle Scholar
  124. 124.
    Weintraub H. 1978. The nucleosome repeat length increases during erythropoiesis in the chick. Nucleic Acids Res. 5, 1179–1188.PubMedCrossRefGoogle Scholar
  125. 125.
    Berkowitz E.M., Sanborn A.C., Vaughan D.W. 1983. Chromatin structure in neuronal and neuroglial cell nuclei as a function of age. J. Neurochem. 41, 516–523.PubMedCrossRefGoogle Scholar
  126. 126.
    Schiessel H., Widom J., Bruinsma R.F., Gelbart W.M. 2001. Polymer reptation and nucleosome repositioning. Phys. Rev. Lett. 86, 4414–4417.PubMedCrossRefGoogle Scholar
  127. 127.
    Tirosh I., Sigal N., Barkai N. 2010. Widespread remodeling of mid-coding sequence nucleosomes by Isw1. Genome Biol. 11, R49.PubMedGoogle Scholar
  128. 128.
    Stein A., Takasuka T.E., Collings C.K. 2009. Are nucleosome positions in vivo primarily determined by histone-DNA sequence preferences? Nucleic Acids Res. 38, 709–719.PubMedCrossRefGoogle Scholar
  129. 129.
    Kaplan N., Moore I., Fondufe-Mittendorf Y., Gossett A.J., Tillo D., Field Y., Hughes T.R., Lieb J.D., Widom J., Segal E. 2010. Nucleosome sequence preferences influence in vivo nucleosome organization. Nature Struct. Mol. Biol. 17, 918–920; author’s reply 920–922.CrossRefGoogle Scholar
  130. 130.
    Pugh B.F. 2010. A preoccupied position on nucleosomes. Nature Struct. Mol. Biol. 17, 923.CrossRefGoogle Scholar
  131. 131.
    Wang X., Bryant G.O., Floer M., Spagna D., Ptashne M. 2011. An effect of DNA sequence on nucleosome occupancy and removal. Nature Struct. Mol. Biol. 18, 507–509.CrossRefGoogle Scholar
  132. 132.
    Fan X., Moqtaderi Z., Jin Y., Zhang Y., Liu X.S., Struhl K. 2010. Nucleosome depletion at yeast terminators is not intrinsic and can occur by a transcriptional mechanism linked to 3′-end formation. Proc. Natl. Acad. Sci. U.S.A. 107, 17945–17950.PubMedCrossRefGoogle Scholar
  133. 133.
    Grokhovsky S.L., Il’icheva I.A., Nechipurenko D.Y., Golovkin M.V., Panchenko L.A., Polozov R.V., Nechipurenko Y.D. 2011. Sequence-specific ultrasonic cleavage of DNA. Biophys J. 100, 117–125.PubMedCrossRefGoogle Scholar
  134. 134.
    Mrazek J. 2010. Comparative analysis of sequence periodicity among prokaryotic genomes points to differences in nucleoid structure and a relationship to gene expression. J. Bacteriol. 192, 3763–3772.PubMedCrossRefGoogle Scholar
  135. 135.
    Ohlsson R., Bartkuhn M., Renkawitz R. 2010. CTCF shapes chromatin by multiple mechanisms: The impact of 20 years of CTCF research on understanding the workings of chromatin. Chromosoma. 119, 351–360.PubMedCrossRefGoogle Scholar
  136. 136.
    Jenuwein T., Allis C.D. 2001. Translating the histone code. Science. 293, 1074–1080.PubMedCrossRefGoogle Scholar
  137. 137.
    Teif V.B., Rippe K. 2011. Nucleosome mediated crosstalk between transcription factors at eukaryotic enhancers. Phys. Biol. 8, 04400.CrossRefGoogle Scholar
  138. 138.
    Zhang Z., Wippo C.J., Wal M., Ward E., Korber P., Pugh B.F. 2011. A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science. 332, 977–980.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • V. B. Teif
    • 1
  • A. V. Shkrabkou
    • 2
  • V. P. Egorova
    • 2
  • V. I. Krot
    • 3
  1. 1.German Cancer Research Center (DKFZ) and BioquantHeidelbergGermany
  2. 2.M. Tank Belarusian State Pedagogical UniversityMinskBelarus
  3. 3.Belarusian State UniversityMinskBelarus

Personalised recommendations