Molecular Biology

, Volume 46, Issue 1, pp 75–84

Molecular evolution of the tick-borne encephalitis and Powassan viruses

Genomics. Transcriptomics

Abstract

Issues associated with newly emerging viruses, their genetic diversity, and viral evolution in modern environments are currently attracting growing attention. In this study, a phylogenetic analysis was performed and the evolution rate was evaluated for such pathogenic flaviviruses endemic to Russia as tick-borne encephalitis virus (TBEV) and Powassan virus (PV). The analysis involved 47 nucleotide sequences of the TBEV genome region encoding protein E and 17 sequences of the PV NS5-encoding region. The nucleotide substitution rate was estimated as 1.4 × 10−4 and 5.4 × 10−5 substitutions per site per year for the E protein-encoding region of the TBEV genome and for the NS5 genome region of PV, respectively. The ratio of non-synonymous to synonymous nucleotide substitutions (dN/dS) in viral sequences was calculated as 0.049 for TBEV and 0.098 for PV. The highest dN/dS values of 0.201–0.220 were found in the subcluster of Russian and Canadian PV strains, and the lowest value of 0.024 was observed in the cluster of Russian and Chinese strains of the Far Eastern TBEV genotype. Evaluation of time intervals between the events of viral evolution showed that the European subtype of TBEV diverged from the common TBEV ancestor approximately 2750 years ago, while the Siberian and Far Eastern subtypes emerged approximately 2250 years ago. The PV was introduced into its natural foci of the Russian Primorskii krai only approximately 70 years ago; these strains were very close to Canadian PV strains. The pattern of PV evolution in North America was similar to the evolution of the Siberian and Far Eastern TBEV subtypes in Asia. The moments of divergence between major genetic groups of TBEV and PV coincide with historical periods of climate warming and cooling, suggesting that climate change was a key factor in the evolution of flaviviruses in past millennia.

Keywords

flaviviruses tick-borne encephalitis virus Powassan virus synonymous and nonsynonymous substitutions phylogenetic analysis molecular evolution 

Abbreviations

TBEV

tick-borne encephalitis virus

PV

Powassan virus

WNV

West Nile virus

dS

synonymous nucleotide substitution

dN

nonsynonymous nucleotide substitution

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Virus Taxonomy: 8th Report of the International Committee on the Taxonomy of Viruses. Eds. Fauquet C.M., Mayo M.A., Maniloff J., Desselberger U., Ball L.A. NY: Academic, 2005.Google Scholar
  2. 2.
    Heinz F.X., Mandl C.W.. The molecular biology of tick-borne encephalitis virus. Acta Pathol. Microbiol. Immunol. Scand. 101, 735–745.Google Scholar
  3. 3.
    Loktev V.B., Ternovoi V.A., Netesov S.V. 2007. Molecular genetic characteristics of tick-borne encephalitis virus. Vopr. Virusol. 52, 10–16.PubMedGoogle Scholar
  4. 4.
    Grard G., Moureau G., Charrel R.N., Lemasson J.J., Gonzalez J.P., Gallian P., Gritsun T.S., Holmes E.C., Gould E.A., de Lamballerie X. 2007. Genetic characterization of tick-borne flaviviruses: New insights into evolution, pathogenetic determinants and taxonomy. Virology. 361, 80–92.PubMedCrossRefGoogle Scholar
  5. 5.
    Korenberg E.I., Kovalevskii Y.V. 1999. Main features of tick-borne encephalitis eco-epidemiology in Russia. Zbl. Bakteriol. 289, 525–539.CrossRefGoogle Scholar
  6. 6.
    Gaunt M.W., Sall A.A., de Lamballerie X., Falconar A.K., Dzhivanian T.I., Gould E.A. 2001. Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association, and biogeography. J. Gen. Virol. 82, 1867–1876.PubMedGoogle Scholar
  7. 7.
    Chastel C., Main A.J., Guiguen C., le Lay G., Quillien M.C., Mannat J.Y., Beaucournu J.C. 1985. The isolation of Meaban virus, a new avivirus from the seabird tick Ornithodoros (Alecorobius) maritimus in France. Arch. Virol. 83, 129–140.PubMedCrossRefGoogle Scholar
  8. 8.
    Gao G.F., Hussain M.H., Reid H.W. Gould E.A. 1993. Classification of a new member of the TBE flavivirus subgroup by its immunological, pathogenetic and molecular characteristics: identification of subgroup-specific pentapeptides. Virus Res. 30, 129–144.PubMedCrossRefGoogle Scholar
  9. 9.
    Zanotto P.M.A., Gao G.F., Gritsun T., Marin M.S., Jiang W.R., Venugopal K., Reid H.W., Gould E.A. 1995. An arbovirus cline across the northern hemisphere. Virology. 210, 152–159.PubMedCrossRefGoogle Scholar
  10. 10.
    Gould E.A., Zanotto P.M.A., Holmes E.C. 1997. The genetic evolution of the flaviviruses. In: Factors in the Emergence of Arboviruses Diseases. Paris: Elsevier.Google Scholar
  11. 11.
    Zanotto P.M.A., Gould E.A., Gao G.F., Harvey P.H., Holmes E.C. 1996. Population dynamics of flaviviruses revealed by molecular phylogenies. Proc. Nat. Acad. Sci. U.S.A. 93, 548–553.CrossRefGoogle Scholar
  12. 12.
    Suzuki Y. 2007. Multiple transmissions of tick-borne encephalitis virus between Japan and Russia. Genes Genet. Syst. 82, 187–195.PubMedCrossRefGoogle Scholar
  13. 13.
    Kumar S., Nei M., Dudley J., Tamura K. 2008. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 9, 299–306.PubMedCrossRefGoogle Scholar
  14. 14.
    Drummond A.J., Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214.PubMedCrossRefGoogle Scholar
  15. 15.
    Pond S.L., Frost S.D.W. 2005. Datamonkey: Rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics. 21, 2531–2533.PubMedCrossRefGoogle Scholar
  16. 16.
    Heinz F.X., Kunz C. 1981. Homogeneity of the structural glycoprotein from European isolates of tick-borne encephalitis virus: Comparison with other flaviviruses. J. Gen. Virol. 57, 263–274.PubMedCrossRefGoogle Scholar
  17. 17.
    Heinz F.X., Kunz C. 1982. Molecular epidemiology of tick-borne encephalitis virus: Peptide mapping of large non-structural proteins of European isolates and comparison with other flaviviruses. J. Gen. Virol. 62, 271–285.PubMedCrossRefGoogle Scholar
  18. 18.
    Guirakhoo F., Radda A.C., Heinz F.X., Kunz C. 1987. Evidence for antigenic stability of tick-borne encephalitis virus by the analysis of natural isolates. J. Gen. Virol. 68, 859–864.PubMedCrossRefGoogle Scholar
  19. 19.
    Ecker M., Allison S.L., Meixner T., Heinz F.X. 1999. Sequence analysis and genetic classification of tick-borne encephalitis viruses from Europe and Asia. J. Gen. Virol. 80, 179–185.PubMedGoogle Scholar
  20. 20.
    Shapiro B., Rambaut A., Drummond A.J. 2006. Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. Mol. Biol. Evol. 23, 7–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Hayasaka D., Suzuki Y., Kariwa H., Ivanov L., Volkov V., Demenev V., Mizutani T., Gojobori T., Takashima I. 1999. Phylogenetic and virulence analysis of tick-borne encephalitis viruses from Japan and far-eastern Russia. J. Gen. Virol. 80, 3127–3135.PubMedGoogle Scholar
  22. 22.
    Jenkins G.M., Rambaut A., Pybus O.G., Holmes E.C. 2002. Rates of molecular evolution in RNA viruses: A quantitative phylogenetic analysis. J. Mol. Evol. 54, 156–165.PubMedCrossRefGoogle Scholar
  23. 23.
    Hanada K., Suzuki Y., Gojobori T. 2004. A large variation in the rates of synonymous substitution for RNA viruses and its relationship to a diversity of viral infection and transmission modes. Mol. Biol. Evol. 21, 1074–1080.PubMedCrossRefGoogle Scholar
  24. 24.
    Leonova G.N., Kondratov I.G., Ternovoi V.A., Romanova E.V., Protopopova E.V., Chausov E.V., Pavlenko E.V., Ryabchikova E.I., Belikov S.I., Loktev V.B. 2009. The characterization of Powassan viruses from far-eastern Russia. Arch. Virol. 154, 811–820.PubMedCrossRefGoogle Scholar
  25. 25.
    Pogodina V.V. 1999. Vospominaniya o M.P. Chumakove (Reminiscences on Mikhail Petrovich Chumakov). Moscow.Google Scholar
  26. 26.
    Gritsun T.S., Lashkevich V.A., Gould E.A. 2003. Tick-borne encephalitis. Antiviral. Res. 57, 129–146.PubMedCrossRefGoogle Scholar
  27. 27.
    Pogodina V.V., Bochkova N.G., Karan’ L.S., Trukhina A.G., Levina L.S., Malenko G.V., Druzhinina T.A., Lukashenko Z.S., Dul’keit O.F., Platonov A.E. 2004. The Siberian and Far-Eastern subtypes of tick-borne encephalitis virus registered in Russia’s Asian regions: Genetic and antigen characteristics of the strains. Vopr. Virusol. 49, 20–25.PubMedGoogle Scholar
  28. 28.
    Pogodina V.V., Karan’ L.S., Koliasnikova N.M., et al. 2007. Evolution of tick-borne encephalitis and a problem of evolution of its causative agent. Vopr. Virusol. 52, 16–21.PubMedGoogle Scholar
  29. 29.
    Ogden N.H., Maarouf A., Barker I.K., Bigras-Poulin M., Lindsay L.R., Morshed M.G., O’Callaghan C.J., Ramay F., Waltner-Toews D., Charron D.F. 2006. Climate change and the potential for range expansion of the Lyme disease vector Ixodes scapularis in Canada. Int. J. Parasitol. 36, 63–70.PubMedCrossRefGoogle Scholar
  30. 30.
    Alley R.B. 2000. The Younger Dryas cold interval as viewed from central Greenland, Quart. Sci. Rev. 19, 213–226.CrossRefGoogle Scholar
  31. 31.
    Jones P.D., Osborn T.J., Briffa K.R. 2001. The evolution of climate over the last millennium. Science. 292, 662–667.PubMedCrossRefGoogle Scholar
  32. 32.
    Licciardi J.M., Schaefer J.M., Taggart J.R., Lund D.C. 2009. Holocene glacier fluctuations in the Peruvian Andes indicate northern climate linkages. Science. 325, 1677–1679.PubMedCrossRefGoogle Scholar
  33. 33.
    Mann M.E., Zhang Z., Rutherford S., Bradley R.S., Hughes M.K., Shindell D., Ammann C., Faluvegi G., Ni F. 2009. Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science. 326, 1256–1260.PubMedCrossRefGoogle Scholar
  34. 34.
    Kaufman D.S., Schneider D.P., McKay N.P., Ammann C.M., Bradley R.S., Briffa K.R., Miller G.H., Otto-Bliesner B.L., Overpeck J.T., Vinther B.M. 2009. Arctic Lakes 2k project members: Recent warming reverses long-term Arctic cooling. Science. 325, 1236–1239.PubMedCrossRefGoogle Scholar
  35. 35.
    Trouet V., Esper J., Graham N.E., Baker A., Scourse J.D., Frank D.C. 2009. Persistent positive North Atlantic oscillation mode dominated the Medieval Climate Anomaly. Science. 324, 78–80.PubMedCrossRefGoogle Scholar
  36. 36.
    Alley R.B., Brigham-Grette J.T.A.J., Clarke G.K.C., et al. 2010. History of the Greenland Ice Sheet: Paleoclimatic insights. Quart. Sci. Rev. 29, 1728–1756.CrossRefGoogle Scholar
  37. 37.
    McGuire K., Holmes E.C., Gao G.F., Reid H.W., Gould E.A. 1998. Tracing the origins of louping ill virus by molecular phylogenetic analysis. J. Gen. Virol. 79, 981–988.PubMedGoogle Scholar
  38. 38.
    Romanova L.Iu., Gmyl A.P., Dzhivanian T.I., Bakhmutov D.V., Lukashev A.N., Gmyl L.V., Rumyantsev A.A., Burenkova L.A., Lashkevich V.A., Karganova G.G. 2007. Microevolution of tick-borne encephalitis virus in course of host alternation. Virology. 362, 75–84.PubMedCrossRefGoogle Scholar
  39. 39.
    Miyamoto K., Sato Y., Okada K., Fukunaga M., Sato F. 1997. Competence of a migratory bird, the red-bellied thrush (Turdus chrysolaus), as an avian reservoir for the Lyme disease spirochetes in Japan. Acta Trop. 65, 43–51.PubMedCrossRefGoogle Scholar
  40. 40.
    Kovalev S.Y., Kokorev V.S., Belyaeva I.V. 2010. Distribution of Far-Eastern tick-borne encephalitis virus subtype strains in the former Soviet Union. J. Gen. Virol. 91, 2941–2946.PubMedCrossRefGoogle Scholar
  41. 41.
    Kovalev S.Y., Chernykh D.N., Kokorev V.S., Snitkovskaya T.E., Romanenko V.V. 2009. Origin and distribution of tick-borne encephalitis virus strains of the Siberian subtype in the Middle Urals, the north-west of Russia and the Baltic countries. J. Gen. Virol. 90, 2884–2892.PubMedCrossRefGoogle Scholar
  42. 42.
    Chausov E.V., Ternovoi V.A., Protopopova E.V., Kononova J.V., Konovalova S.N., Pershikova N.L., Romanenko V.N., Ivanova N.V., Bolshakova N.P., Moskvitina N.S., Loktev V.B. 2010. Variability of the tick-borne encephalitis virus genome in the 5′ non-coding region derived from ticks Ixodes persulcatus and Ixodes pavlovskyi in Western Siberia. Vector-Borne Zoonot. Dis. 154, 365–375.CrossRefGoogle Scholar
  43. 43.
    Kim S.Y., Yun S.M., Han M.G., Lee I.Y., Lee N.Y., Jeong Y.E., Lee B.C., Ju Y.R. 2008. Isolation of tick-borne encephalitis viruses from wild rodents, South Korea. Vector-Borne Zoonot. Dis. 8, 7–13.CrossRefGoogle Scholar
  44. 44.
    Kuno G., Artsob H., Karabatsos N., Tsuchiya K.R., Chang G.J. 2001. Genomic sequencing of deer tick virus and phylogeny of Powassan-related viruses of North America. Am. J. Trop. Med. Hyg. 65, 671–676.PubMedGoogle Scholar
  45. 45.
    Overpeck J.T., Otto-Bliesner B.L., Miller G.H., Muhs D.R., Alley R.B., Kiehl J.T. 2006. Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science. 311, 1747–1750.PubMedCrossRefGoogle Scholar
  46. 46.
    Alley R.B., Clark P.U., Huybrechts P., Joughin I. 2005. Ice-sheet and sea-level changes. Science. 310, 456–460.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Vector State Research Center of Virology and BiotechnologyKoltsovo, Novosibirsk oblastRussia
  2. 2.Institute of Cytology and GeneticsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations