Molecular Biology

, Volume 45, Issue 6, pp 950–958 | Cite as

Modulation of activated oncogene c-kit expression with RNA-interference

  • P. V. Spirin
  • N. A. Nikitenko
  • T. D. Lebedev
  • P. M. Rubtsov
  • C. Stocking
  • V. S. PrasolovEmail author
Molecular Biology of the Cell


Overexpression of oncogene c-kit is detected in 80% patients with acute myeloid leukemia (AML). A transgenic model cell line expressing oncogene c-kit was obtained by transduction with a recombinant retrovirus. We have designed small interfering RNAs (siRNAs) that efficiently suppress the expression of activated oncogene c-kit. Further, small hairpin RNAs (shRNAs) targeting c-kit mRNA were designed and expressed in lentiviral vectors. We report a stable reduction in c-kit expression following the introduction of shRNAs into model cells, as well as Kasumi-1 cells from a patient with AML.


RNA-interference small interfering RNA (siRNA) small hairpin RNA (shRNA) lentiviral vectors regulation of gene expression posttranscriptional regulation of expression acute myeloid leukemia (AML) 



acute myeloid leukemia


hemopoietic stem cell


French-American-British classification system of leukemias


small interfering RNA


small hairpin RNA


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weinberg R.A. 2007. The Biology of Cancer. N.Y.: Garland Sci.Google Scholar
  2. 2.
    Wang Y.Y., Zhou G.B., Yin T., et al. 2005. AML1-ETO and C-KIT mutation/overexpression in t(8;21) leukemia: Implication in stepwise leukemogenesis and response to Gleevec. Proc. Natl. Acad. Sci. USA. 102, 1104–1109.PubMedCrossRefGoogle Scholar
  3. 3.
    Jemal A., Siegel R., Ward E., Hao Y., Xu J., Thun M.J. 2009. Cancer statistics. CA Cancer J. Clin. 59, 225–249.PubMedCrossRefGoogle Scholar
  4. 4.
    Grimwade D., Walker H., Oliver F., Wheatley K., Harrison C., Harrison G., Rees J., Hann I., Stevens R., Burnett A., Goldstone A. 1998. The importance of diagnostic cytogenetics on outcome in AML: Analysis of 1,612 patients entered into the MRC AML 10 trial. The medical research council adult and children’s leukaemia working parties. Blood. 92, 2322–2333.PubMedGoogle Scholar
  5. 5.
    Bennett J.M., Catovsky D., Daniel M.T., Flandrin G., Galton D.A., Gralnick H.R., Sultan C. 1976. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br. J. Haematol. 33, 451–458.PubMedCrossRefGoogle Scholar
  6. 6.
    Gilliland D.G. 1998. Molecular genetics of human leukemia. Leukemia. 12(Suppl. 1), S7–S12.PubMedGoogle Scholar
  7. 7.
    Frankfurt O., Licht J.D., Tallman M.S. 2007. Molecular characterization of acute myeloid leukemia and its impact on treatment. Curr. Opin. Oncol. 19, 635–649.PubMedCrossRefGoogle Scholar
  8. 8.
    Ikeda H., Kanakura Y., Tamaki T., Kuriu A., Kitayama H., Ishikawa J., Kanayama Y., Yonezawa T., Tarui S., Griffin J.D. 1991. Expression and functional role of the proto-oncogene c-kit in acute myeloblastic leukemia cells. Blood. 78, 2962–2968.PubMedGoogle Scholar
  9. 9.
    Baskaran D., Spirin P.V., Prassolov V.S. 2010. Activated leukemic oncogenes responsible for neoplastic transformation of hematopoietic cells. Mol. Biol. (Moscow). 44, 369–379.CrossRefGoogle Scholar
  10. 10.
    Bantounas I., Phylactou L.A., Uney J.B. 2004. RNA interference and the use of small interfering RNA to study gene function in mammalian systems. J. Mol. Endocrinol. 33, 545–557.PubMedCrossRefGoogle Scholar
  11. 11.
    Vilgelm A.E., Chumakov S.P., Prassolov V.S. 2006. RNA interference: Biology and prospects of application in biomedicine and biotechnology. Mol. Biol. (Moscow). 40, 339–354.CrossRefGoogle Scholar
  12. 12.
    Spirin P.V., Baskaran D., Orlova N.N., Rulina A.V., Nikitenko N.A., Chernolovskaya E.L., Zenkova M.A., Vlassov V.V., Rubtsov P.M., Chumakov P.M., Stocking C., Prassolov V.S. 2010. Downregulation of activated leukemic oncogenes AML1-ETO and RUNX1(K83N) expression with RNA-interference. Mol. Biol. (Moscow). 44, 776–786.CrossRefGoogle Scholar
  13. 13.
    Elbashir S.M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T. 2001. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 411, 494–498.PubMedCrossRefGoogle Scholar
  14. 14.
    Caplen N.J., Parrish S., Imani F., Fire A., Morgan R.A. 2001. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci. U.S.A. 98, 9742–9747.PubMedCrossRefGoogle Scholar
  15. 15.
    Fang Z.H., Dong C.L., Chen Z., Zhou B., Liu N., Lan H.F., Liang L., Liao W.B., Zhang L., Han Z.C. 2009. Transcriptional regulation of survivin by c-Myc in BCR/ABL-transformed cells: Implications in anti-leukaemic strategy. J. Cell Mol. Med. 13, 2039–2052.PubMedCrossRefGoogle Scholar
  16. 16.
    Thomas M., Greil J., Heidenreich O. 2006. Targeting leukemic fusion proteins with small interfering RNAs: Recent advances and therapeutic potentials. Acta Pharmacol. Sin. Mar. 27, 273–281.Google Scholar
  17. 17.
    Nechipurenko O., Rossi L., Moore B. 2007. Comparison of approaches for rational siRNA design leading to a new efficient and transparent method. Nucleic Acids Res. 35, 1–10.Google Scholar
  18. 18.
    Volkov A.A., Kruglova N.S., Meschaninova M.I., Venyaminova A.G., Zenkova M.A., Vlassov V.V., Chernolovskaya E.L. 2009. Selective protection of nuclease-sensitive sites in siRNA prolongs silencing effect. Oligonucleotides. 19, 191–202.PubMedCrossRefGoogle Scholar
  19. 19.
    Fagard M., Vaucheret H. 2000. Systemic silencing signals. Plant Mol. Biol. 43, 285–293.PubMedCrossRefGoogle Scholar
  20. 20.
    Singer O., Verma I.M. 2008. Applications of lentiviral vectors for shRNA delivery and transgenesis. Curr. Gene. Ther. 8, 483–488.PubMedCrossRefGoogle Scholar
  21. 21.
    Manjunath N., Wu H., Subramanya S., Shankar P. 2009. Lentiviral delivery of short hairpin RNAs. Adv. Drug Deliv. Rev. 61, 732–745.PubMedCrossRefGoogle Scholar
  22. 22.
    Larizza L., Magnani I., Beghini A. 2005. The Kasumi-1 cell line: A t(8;21)-kit mutant model for acute myeloid leukemia. Leuk. Lymphoma. 46, 247–255.PubMedCrossRefGoogle Scholar
  23. 23.
    Schwieger M., Löhler J., Friel J., Scheller M., Horak I., Stocking C. 2002. AML1-ETO Inhibits maturation of multiple lymphohematopoietic lineages and induces myeloblast transformation in synergy with ICSBP deficiency. J. Exp. Med. 196, 1227–1240.PubMedCrossRefGoogle Scholar
  24. 24.
    Kravchenko J.E., Ilyinskaya G.V., Komarov P.G., Agapova L.S., Kochetkov D.V., Strom E., Frolova E.I., Kovriga I., Gudkov A.V., Feinstein E., Chumakov P.M. 2008. Small-molecule RETRA suppresses mutant p53- bearing cancer cells through a p73-dependent salvage pathway. Proc. Natl. Acad. Sci. U.S.A. 105, 6302–6307.PubMedCrossRefGoogle Scholar
  25. 25.
    Huo L., Sugimura J., Tretiakova M.S., Patton K.T., Gupta R., Popov B., Laskin W.B., Yeldandi A., Teh B.T., Yang X.J. 2005. C-kit expression in renal oncocytomas and chromophobe renal cell carcinomas. Hum. Pathol. 36, 262–268.PubMedCrossRefGoogle Scholar
  26. 26.
    Stec R., Grala B., Maczewski M., Bodnar L., Szczylik C. 2009. Chromophobe renal cell cancer: Review of the literature and potential methods of treating metastatic disease. J. Exp. Clin. Cancer Res. 28, 1–6.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • P. V. Spirin
    • 1
  • N. A. Nikitenko
    • 1
  • T. D. Lebedev
    • 1
  • P. M. Rubtsov
    • 1
  • C. Stocking
    • 2
  • V. S. Prasolov
    • 1
    Email author
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Heinrich-Pette-Institute for Experimental Virology and ImmunologyHamburgGermany

Personalised recommendations